Advertisement

Cell and Tissue Research

, Volume 362, Issue 3, pp 633–642 | Cite as

CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche

  • Tamaki Yokohama-TamakiEmail author
  • Keishi Otsu
  • Hidemitsu Harada
  • Shunichi Shibata
  • Nobuko Obara
  • Kazuharu Irie
  • Akiyoshi Taniguchi
  • Takashi Nagasawa
  • Kazunari Aoki
  • Steven R. Caliari
  • Daniel W. Weisgerber
  • Brendan A. C. HarleyEmail author
Regular Article

Abstract

Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche.

Keywords

CXCR4/CXCL12 signal Tooth Dental stem cell niche Migration Proliferation 

Notes

Acknowledgments

We are grateful to Dr. Stephanie Tsang (University of Illinois at Urbana-Champaign), Dr. Myung-Eun Shin (Duke University Medical Center), and Ms. Yanzhen Li, M.A. (University of North Carolina) for critical discussions; to Mr. Naoyuki Tamaki (IBM Global Services Japan Solution and Services Company ISOL) for technical support in generating beautiful figures; Dr. Yuko Suzuki (Health Sciences University of Hokkaido) for excellent suggestions and for providing materials. This work was supported by JSPS KAKENHI Grant Numbers 19791342, 15K20358 to Y-T. T. We are also grateful for the funding for this study provided by the Chemistry-Biology Interface Training Program NIH NIGMS T32GM070421 (SRC) as well as the Chemical and Biomolecular Engineering Dept. (BAH), and the Institute for Genomic Biology (BAH) at the University of Illinois at Urbana-Champaign.

Conflicts of interest

The authors indicate no potential conflicts of interest.

Author contribution

Tamaki Yokohama-Tamaki: conception and design, manuscript writing, collection and assembly of all data. Otsu Keishi: provision of materials (mHAT9a cells) and data analysis. Hidemitsu Harada: provision of materials (mHAT9a cells). Nobuko Obara: construction of CXCL12 mRNA probe. Kazuharu Irie and Shunichi Shibata: data analysis and interpretation of histology. Akiyoshi Taniguchi: data analysis and interpretation of real-time PCR. Takashi Nagasawa, Kazunari Aoki: provision of materials (CXCR4 and CXCL12 knockout mice). Steven R. Caliari: data analysis and interpretation of real-time PCR and transwell cell migration assays. Daniel W. Weisgerber: data analysis and interpretation of alamarBlue assays. Brendan A.C. Harley: provision of study material, data analysis and interpretation, financial support, final approval of manuscript.

Supplementary material

441_2015_2248_Fig5_ESM.gif (104 kb)
Supplemental figure 1

Immuno histochemistry of CXCR4 and CXCL12 proteins in the apical end of incisors (s): Arrows indicate CXCR4 signals in the TA.(t): Arrows indicate CXCL12 signals in the mesenchyme were adjacent to the apical bud. (GIF 103 kb)

441_2015_2248_MOESM1_ESM.tif (15.7 mb)
(TIFF 16058 kb)
441_2015_2248_Fig6_ESM.gif (118 kb)
Supplemental figure 2

The phenotype of CXCR12 -/- incisors and controls (o-r): CXCL12 -/- and CXCL12 +/+ heads, mandiublars and incisor germs (s, t): Hematoxylin and eosin staining of mandibular incisor sections from E18.5 CXCL12 -/- and CXCL12 +/+ mice incisors. Scale bar = 100 μm in (q). Scale bar = 100 μm in (r). Scale bar = 50 μm in (t). (GIF 118 kb)

441_2015_2248_MOESM2_ESM.tif (15.7 mb)
(TIFF 16074 kb)

References

  1. Ara T, Nakamura Y, Egawa T, Sugiyama T, Abe K, Kishimoto T, Matsui Y, Nagasawa T (2003) Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc Natl Acad Sci USA 100:5319–5323PubMedCentralCrossRefPubMedGoogle Scholar
  2. Atchley WR, Plummer AA, Riska B (1985) Genetic analysis of size‐scaling patterns in the mouse mandible. Genetics 111:579–595PubMedCentralPubMedGoogle Scholar
  3. Brzoska E, Kowalewska M, Markowska-Zagrajek A, Kowalski K, Archacka K, Zimowska M, Grabowska I, Czerwińska AM, Czarnecka-Góra M, Stremińska W, Jańczyk-Ilach K, Ciemerych MA (2012) Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells. Biol Cell 104:722–737CrossRefPubMedGoogle Scholar
  4. Caliari SR, Harley BA (2011) The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity. Biomaterials 32:5330–5340PubMedCentralCrossRefPubMedGoogle Scholar
  5. David NB, Sapède D, Saint-Etienne L, Thisse C, Thisse B, Dambly-Chaudière C, Rosa FM, Ghysen A (2002) Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc Natl Acad Sci USA 99:16297–16302PubMedCentralCrossRefPubMedGoogle Scholar
  6. Harada H, Ohshima H (2004) New perspectives on tooth development and the dental stem cell niche. Arch Histol Cytol 67:1–11CrossRefPubMedGoogle Scholar
  7. Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I (1999) Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol 147:105–120PubMedCentralCrossRefPubMedGoogle Scholar
  8. Harada H, Toyono T, Toyoshima K, Ohuchi H (2002) FGF10 maintains stem cell compartment in developing mouse incisors. Development 129:1533–1541PubMedGoogle Scholar
  9. Ho TK, Tsui J, Xu S, Leoni P, Abraham DJ, Baker DM (2010) Angiogenic effects of stromal cell-derived factor-1 (SDF-1/CXCL12) variants in vitro and the in vivo expressions of CXCL12 variants and CXCR4 in human critical leg ischemia. J Vasc Surg 51:689–699CrossRefPubMedGoogle Scholar
  10. Jiang L, Zhu YQ, Du R, Gu YX, Xia L, Qin F, Ritchie HH (2008) The expression and role of stromal cell-derived factor-1alpha-CXCR4 axis in human dental pulp. J Endod 34:939–944PubMedCentralCrossRefPubMedGoogle Scholar
  11. Jin J, Zhao WC, Yuan F (2013) CXCR7/CXCR4/CXCL12 axis regulates the proliferation, migration, survival and tube formation of choroid-retinal endothelial cells. Ophthalmic Res 50:6–12CrossRefPubMedGoogle Scholar
  12. Kawamoto T (2003) Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol 66:123–143CrossRefPubMedGoogle Scholar
  13. Li CY, Cha W, Luder HU, Charles RP, McMahon M, Mitsiadis TA, Klein OD (2005) E-cadherin regulates the behavior and fate of epithelial stem cells and their progeny in the mouse incisor. Dev Biol 366:357–366CrossRefGoogle Scholar
  14. Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M, Marquez L, Peiper SC, Barr FG, Janowska-Wieczorek A, Ratajczak MZ (2002) CXCR4-SDF1 signaling is activate in rhabdomyosarcoma cells and regulate locomotion, chemotaxis, and adhesion. Blood 100:2597–2606CrossRefPubMedGoogle Scholar
  15. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95:9448–9453PubMedCentralCrossRefPubMedGoogle Scholar
  16. Maysami S, Nguyen D, Zobel F, Pitz C, Heine S, Höpfner M, Stangel M (2006) Modulation of rat oligodendrocyte precursor cells by the chemokine CXCL12. Neuroreport 31:1187–1190CrossRefGoogle Scholar
  17. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812PubMedCentralCrossRefPubMedGoogle Scholar
  18. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611PubMedCentralCrossRefPubMedGoogle Scholar
  19. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638CrossRefPubMedGoogle Scholar
  20. Ni HT, Hu S, Sheng WS, Olson JM, Cheeran MC, Chan AS, Lokensgard JR, Peterson PK (2004) High-level expression of functional chemokine receptor CXCR4 on human neural precursor cells. Brain Res Dev Brain Res 152:159–169CrossRefPubMedGoogle Scholar
  21. Nystul T, Spradling AC (2007) An epithelial niche in the Drosophila ovary undergoes long range stem cell replacement. Cell Stem Cell 1:277–285CrossRefPubMedGoogle Scholar
  22. O’ Hayre M, Salanga CL, Kipps TJ, Messmer D, Dorrestein PC, Handel TM (2010) Elucidating the CXCL12/CXCR4 signaling network in chronic lymphocytic leukemia through phosphoproteomics analysis. PLoS ONE 22:e11716CrossRefGoogle Scholar
  23. Otsu K, Kishigami R, Fujiwara N, Ishizeki K, Harada H (2011) Functional role of Rho-kinase in ameloblast differentiation. J Cell Physiol 226:2527–2534CrossRefPubMedGoogle Scholar
  24. Scadden DT (2006) The stem-cell niches as an entity of action. Nature 441:1075–1079CrossRefPubMedGoogle Scholar
  25. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the Hematopoietic Stem Cell Pool by CXCL12-CXCR4 Chemokine Signaling in Bone Marrow Stromal Cell Niches. Immunity 25:977–988CrossRefPubMedGoogle Scholar
  26. Suzuki T, Lee CH, Chen M, Zhao W, Fu SY, Qi JJ, Chotkowski G, Eisig SB, Wong A, Mao JJ (2011) Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res 90:1013–1018CrossRefPubMedGoogle Scholar
  27. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S, Kishimoto T, Nagasawa T (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 93:591–594CrossRefGoogle Scholar
  28. Thesleff I, Wang XP, Suomalainen M (2007) Regulation of epithelial stem cells in tooth regeneration. C R Biol 330:561–564CrossRefPubMedGoogle Scholar
  29. Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M, Mayor R (2010) Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 19:39–53PubMedCentralCrossRefPubMedGoogle Scholar
  30. Wang XP, Suomalainen M, Felszeghy S, Zelarayan LC, Alonso MT, Plikus MV, Maas RL, Chuong CM, Schimmang T, Thesleff I (2007) An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol 5:e159PubMedCentralCrossRefPubMedGoogle Scholar
  31. Yokohama- Tamaki T, Fujiwara N, Shibata S, Wakisaka S, Harada H (2008) The Epithelial - Mesenchymal interaction plays a role in the maintenance of the stem cell niche of mouse incisors via Fgf10 and Fgf9. Open Biotechnol J 2:111–115CrossRefGoogle Scholar
  32. Yokohama- Tamaki T, Maeda T, Tanaka TS, Shibata S (2011) Functional analysis of CTRP3/cartducin in Meckel’s cartilage and developing condylar cartilage in the fetal mouse mandible. J Anat 218:517–533PubMedCentralCrossRefPubMedGoogle Scholar
  33. Yoshida T, Iwata T, Umemoto T, Shiratsuchi Y, Kawashima N, Sugiyama T, Yamato M, Okano T (2013) Promotion of Mouse Ameloblast Proliferation by Lgr5 Mediated Integrin Signaling. J Cell Biochem 114:2138–2147CrossRefPubMedGoogle Scholar
  34. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tamaki Yokohama-Tamaki
    • 1
    • 3
    Email author
  • Keishi Otsu
    • 2
  • Hidemitsu Harada
    • 2
  • Shunichi Shibata
    • 3
  • Nobuko Obara
    • 1
  • Kazuharu Irie
    • 1
  • Akiyoshi Taniguchi
    • 4
  • Takashi Nagasawa
    • 5
  • Kazunari Aoki
    • 5
  • Steven R. Caliari
    • 6
  • Daniel W. Weisgerber
    • 6
  • Brendan A. C. Harley
    • 6
    Email author
  1. 1.Division of Histology, Department of Oral Growth and Development, School of DentistryHealth sciences University of HokkaidoHokkaidoJapan
  2. 2.Division of Oral Histology and Developmental Biology, School of DentistryIwate Medical UniversityIwateJapan
  3. 3.Maxillofacial Anatomy, Department of Maxillofacial Biology, Graduate SchoolTokyo Medical and Dental UniversityTokyoJapan
  4. 4.Biomaterials CenterNational Institute for Materials ScienceIbarakiJapan
  5. 5.Department of Immunobiology and Hematology, Institute for Frontier Medical SciencesKyoto UniversityKyotoJapan
  6. 6.Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations