Skip to main content

Advertisement

Log in

Molecular organization and fine structure of the human tectorial membrane: is it replenished?

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

An Erratum to this article was published on 18 September 2015

Abstract

Auditory sensitivity and frequency resolution depend on the physical properties of the basilar membrane in combination with outer hair cell-based amplification in the cochlea. The physiological role of the tectorial membrane (TM) in hair cell transduction has been controversial for decades. New insights into the TM structure and function have been gained from studies of targeted gene disruption. Several missense mutations in genes regulating the human TM structure have been described with phenotypic expressions. Here, we portray the remarkable gradient structure and molecular organization of the human TM. Ultrastructural analysis and confocal immunohistochemistry were performed in freshly fixed human cochleae obtained during surgery. Based on these findings and recent literature, we discuss the role of human TMs in hair cell activation. Moreover, the outcome proposes that the α-tectorin-positive amorphous layer of the human TM is replenished and partly undergoes regeneration during life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

BM:

Basilar membrane

HS:

Hensen’s stripe

IDC:

Interdental cell

IHC:

Inner hair cell

KM:

Kimura’s membrane

L:

Limbus

LZ:

Limbal zone

MaZ:

Marginal zone

MN:

Marginal net

MZ:

Middle zone

OHC:

Outer hair cell

RF:

Radial fiber

SEM:

Scanning electron microscopy

STL:

Subtectorial layer

TEM:

Transmission electron microscopy

TM:

Tectorial membrane

References

  • Alasti F, Sanati MH, Behrouzifard AH, Sadeghi A, de Brouwer AP, Kremer H, Smith RJ, Van Camp G (2008) A novel TECTA mutation confirms the recognizable phenotype among autosomal recessive hearing impairment families. Int J Pediatr Otorhinolaryngol 72:249–55

    Article  PubMed  Google Scholar 

  • Gavara N, Chadwick RS (2009) Collagen-based mechanical anisotropy of the tectorial membrane: implications for inter-row coupling of outer hair cell bundles. PLoS ONE 4:e4877

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghaffari R, Aranyosi AJ, Freeman DM (2007) Longitudinally propagating traveling waves of the mammalian tectorial membrane. Proc Natl Acad Sci U S A 104:16510–16515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gil-Loyzaga P, Raymond J, Gabrion J (1985) Carbohydrates detected by lectins in the vestibular organ. Hear Res 18:269–272

    Article  CAS  PubMed  Google Scholar 

  • Glueckert R, Pfaller K, Kinnefors A, Schrott-Fischer A, Rask-Andersen H (2005) High resolution scanning electron microscopy of the human organ of Corti. A study using freshly fixed surgical specimens. Hear Res 199:40–56

    PubMed  Google Scholar 

  • Hardesty I (1915) On the proportions, development and attachment of the tectorial membrane. Am J Anat 18:1–73

    Article  Google Scholar 

  • Hasko JA, Richardson GP (1988) The ultrastructural organization and properties of the mouse tectorial membrane matrix. Hear Res 35:21–38

    Article  CAS  PubMed  Google Scholar 

  • Hilding AC (1952) Studies on the otic labyrinth. On the origin and insertion of the tectorial membrane. Ann Otol Rhinol Laryngol 61:354–70

    Article  CAS  PubMed  Google Scholar 

  • Hoshino T (1981) Imprints of the inner sensory cell hairs on the human tectorial membrane. Arch Otorhinolaryngol 232:65–71

    Article  CAS  PubMed  Google Scholar 

  • Hoshino T (1977) Contact between the tectorial membrane and the cochlear sensory hairs in the human and the monkey. Arch Otorhinolaryngol 217:53–60

    Article  CAS  PubMed  Google Scholar 

  • Hubbard A (1993) A traveling-wave amplifier model of the cochlea. Science 259:68–71

    Article  CAS  PubMed  Google Scholar 

  • Iurato S (1960) Submicroscopic structure of the membranous labyrinth. 1. The tectorial membrane. Z Zellforsch Mikrosk Anat 52:105–28

    Article  CAS  PubMed  Google Scholar 

  • Ishiyama E, Weibel J, Keels EW, Richardson TL (1970) Ultrastructure of the interdental cells in mammals. Pract Otorhinolaryngol (Basel) 32:321–34

    CAS  Google Scholar 

  • Khalkhali-Ellis Z, Hemming FW, Steel KP (1987) Glycoconjugates of the tectorial membrane. Hear Res 25:185–191

    Article  CAS  PubMed  Google Scholar 

  • Kawabata I, Nomura Y (1981) The imprints of the human tectorial membrane. Acta Otolaryngol 91:29–35

    Article  Google Scholar 

  • Kimura RS (1966) Hairs of the cochlear sensory cells and their attachment to the tectorial membrane. Acta Otolaryngol 61:55–72

    Article  CAS  PubMed  Google Scholar 

  • Kronester-Frei A (1978) Ultrastructure of the different zones of the tectorial membrane. Cell Tissue Res 193:11–23

    Article  CAS  PubMed  Google Scholar 

  • Legan PK, Lukashkina VA, Goodyear RJ, Kössi M, Russell IJ, Richardson GP (2000) A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gainand timing of cochlear feedback. Neuron 28:273–285

    Article  CAS  PubMed  Google Scholar 

  • Lim DJ (1969) Three dimensional observation of the inner ear with the scanning electron microscope. Acta Otolaryngol Suppl 255:1–38

    CAS  PubMed  Google Scholar 

  • Lim DJ (1972) Fine morphology of the tectorial membrane. Its relationship to the organ of Corti. Arch Otolaryngol 96:199–215

    Article  CAS  PubMed  Google Scholar 

  • Lim DJ (1986) Functional structure of the organ of Corti: a review. Hear Res 22:117–146

    Article  CAS  PubMed  Google Scholar 

  • Lim DJ, Rueda J (1990) Distribution of glycoconjugates during cochlea development. A histochemical study. Acta Otolaryngol 110:224–233

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Boström M, Kinnefors A, Rask-Andersen H (2009) Unique expression of connexins in the human cochlea. Hear Res 250:55–62

    Article  CAS  PubMed  Google Scholar 

  • Lukashkin AN, Lukashkina VA, Legan PK, Richardson GP, Russell IJ (2004) Role of the tectorial membrane revealed by otoacoustic emissions recorded from wild-type and transgenic Tecta(deltaENT/deltaENT) mice. J Neurophysiol 91:163–71

    Article  PubMed  Google Scholar 

  • Lukashkin AN, Legan PK, Weddell TD, Lukashkina VA, Goodyear RJ, Welstead LJ, Petit C, Russell IJ, Richardson GP (2012) Mouse model for human deafness DFNB22 reveals that hearing impairment is due to a loss of inner hair cell stimulation. Proc Natl Acad Sci U S A 109:19351–19356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meaud J, Grosh K (2010) The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics. J Acoust Soc Am 127:1411–1421

    Article  PubMed Central  PubMed  Google Scholar 

  • Mustapha M, Weil D, Chardenoux S, Elias S, El-Zir E, Beckmann JS, Loiselet J, Petit C (1999) An alpha-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21. Hum Mol Genet 8:409–412

    Article  CAS  PubMed  Google Scholar 

  • Møller MN, Caye-Thomasen P, Qvortrup K (2013) Oxygenated fixation demonstrates novel and improved ultrastructural features of the human endolymphatic sac. Laryngoscope 123:1967–1975

    Article  PubMed  Google Scholar 

  • Pfister M, Thiele H, Van Camp G, Fransen E, Apaydin F, Aydin O, Leistenschneider P, Devoto M, Zenner HP, Blin N, Nürnberg P, Ozkarakas H, Kupka S (2004) A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations. Cell Physiol Biochem 14:369–376

    Article  CAS  PubMed  Google Scholar 

  • Prieto JJ, Rueda J, Merchan JA (1990) Two different secretion mechanisms in the inner ear’s interdental cells. Hear Res 45:51–61

    Article  CAS  PubMed  Google Scholar 

  • Rask-Andersen H, Liu W, Erixon E, Kinnefors A, Pfaller K, Schrott-Fischer A, Glueckert R (2012) Human cochlea: anatomical characteristics and their relevance for cochlear implantation. Anat Rec (Hoboken) 295:1791–1811

    Article  Google Scholar 

  • Richardson GP, Russell IJ, Duance VC, Bailey AJ (1987) Polypeptide composition of the mammalian tectorial membrane. Hear Res 25:45–60

    Article  CAS  PubMed  Google Scholar 

  • Richardson GP, Lukashkin AN, Russell IJ (2008) The tectorial membrane: one slice of a complex cochlear sandwich. Curr Opin Otolaryngol Head Neck Surg 16:458–464

    Article  PubMed Central  PubMed  Google Scholar 

  • Richter CP, Emadi G, Getnick G, Quesnel A, Dallos P (2007) Tectorial membrane stiffness gradients. Biophys J 93:2265–2276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubio ME, Rueda J, Prieto JJ, Merchán JA (1994) Pilocarpine-induced changes in the saccharide composition of the tectorial membrane and interdental cells of the organ of Corti: a study with gold-labeled lectins. J Histochem Cytochem 42:405–16

    Article  CAS  PubMed  Google Scholar 

  • Russell IJ, Legan PK, Lukashkina VA, Lukashkin AN, Goodyear RJ, Richardson GP (2007) Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane. Nat Neurosci 10:215–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santi PA, Lease MK, Harrison RG, Wicker EM (1990) Ultrastructure of proteoglycans in the tectorial membrane. J Electron Microsc Tech 15:293–300

    Article  CAS  PubMed  Google Scholar 

  • Sellon JB, Ghaffari R, Farrahi S, Richardson GP, Freeman DM (2014) Porosity controls spread of excitation in tectorial membrane traveling waves. Biophys J 106:1406–1413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simmler MC, Cohen-Salmon M, El-Amraoui A, Guillaud L, Benichou JC, Petit C, Panthier JJ (2000) Targeted disruption of otog results in deafness and severe imbalance. Nat Genet 24:139–143

    Article  CAS  PubMed  Google Scholar 

  • Spoendlin H, Schrott A (1988) The spiral ganglion and the innervation of the human organ of Corti. Acta Otolaryngol 105:403–410

    Article  CAS  PubMed  Google Scholar 

  • Steel KP (1983) The tectorial membrane of mammals. Hear Res 9:327–359

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Smith CA (1975) Structure of the avian tectorial membrane. Ann Otol Rhinol Laryngol 84:287–296

    Article  CAS  PubMed  Google Scholar 

  • Teudt IU, Richter CP (2014) Basilar Membrane and Tectorial Membrane Stiffness in the CBA/CaJ Mouse. J Assoc Res Otolaryngol 15:675–694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thorn L, Arnold W, Schinko I, Wetzstein R (1979) The limbus spiralis and its relationship to the developing tectorial membrane in the cochlear duct of the Guinea pig fetus. Anat Embryol (Berl) 155:303–310

    Article  CAS  Google Scholar 

  • Tylstedt S, Kinnefors A, Rask-Andersen H (1997) Neural interaction in the human spiral ganglion: a TEM study. Acta Otolaryngol 117:505–512

    Article  CAS  PubMed  Google Scholar 

  • Voldrich L (1967) Morphology and function of the epithelium of the limbus spiralis cochleae. Acta Otolaryngol 63:503–514

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven K, Van Laer L, Kirschhofer K, Legan PK, Hughes DC, Schatteman I, Verstreken M, Van Hauwe P, Coucke P, Chen A, Smith RJ, Somers T, Offeciers FE, Van de Heyning P, Richardson GP, Wachtler F, Kimberling WJ, Willems PJ, Govaerts PJ, Van Camp G (1998) Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nat Genet 19:60–62

    Article  CAS  PubMed  Google Scholar 

  • Verpy E, Masmoudi S, Zwaenepoel I, Leibovici M, Hutchin TP, Del Castillo I, Nouaille S, Blanchard S, Laine S, Popot JL, Moreno F, Mueller RF, Petit C (2001) Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nat Genet 29:345–349

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Miller KK, Yang T, Hildebrand MS, Shearer AE, DeLuca AP, Scheetz TE, Drummond J, Scherer SE, Legan PK, Goodyear RJ, Richardson GP, Cheatham MA, Smith RJ, Dallos P (2011) Carcinoembryonic antigen-related cell adhesion molecule 16 interacts with alpha-tectorin and is mutated in autosomal dominant hearing loss (DFNA4). Proc Natl Acad Sci U S A 108:4218–4223

    Article  PubMed Central  PubMed  Google Scholar 

  • Zwaenepoel I, Mustapha M, Leibovici M, Verpy E, Goodyear R, Liu XZ, Nouaille S, Nance WE, Kanaan M, Avraham KB, Tekaia F, Loiselet J, Lathrop M, Richardson G, Petit C (2002) Otoancorin, an inner ear protein restricted to the interface between the apical surface of sensory epithelia and their overlying acellular gels, is defective in autosomal recessive deafness DFNB22. Proc Natl Acad Sci U S A 99:6240–6245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by ALF grants from Uppsala University Hospital and Uppsala University and by the Tysta Skolan Foundation, Swedish Deafness Foundation (HRF) and Land Tirol Technologie Förderungsprogram, Förderung von Wissenschaft, Forschung und Entwicklung (Programm K-Regio Vamel) and Med El, Innsbruck, Austria. Our research is part of the European Community 7th Framework Programme on Research, Technological Development and Demonstration. Project acronym: NANOCI. Grant agreement no: 281056. It was also supported by kindly donated private funds from Börje Runögård, Sweden. Dr. Klaus Qvortrup is acknowledged for providing oxygenated fluorocarbon fixative for the TEM investigation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hisamitsu Hayashi or Rudolf Glueckert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, H., Schrott-Fischer, A., Glueckert, R. et al. Molecular organization and fine structure of the human tectorial membrane: is it replenished?. Cell Tissue Res 362, 513–527 (2015). https://doi.org/10.1007/s00441-015-2225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2225-5

Keywords

Navigation