Cell and Tissue Research

, Volume 361, Issue 3, pp 657–668 | Cite as

Union is strength: matrix elasticity and microenvironmental factors codetermine stem cell differentiation fate

  • Hongwei Lv
  • Lisha LiEmail author
  • Yin Zhang
  • Zhishen Chen
  • Meiyu Sun
  • Tiankai Xu
  • Licheng Tian
  • Man Lu
  • Min Ren
  • Yuanyuan Liu
  • Yulin LiEmail author


Stem cells are an attractive cellular source for regenerative medicine and tissue engineering applications due to their multipotency. Although the elasticity of the extracellular matrix (ECM) has been shown to have crucial impacts in directing stem cell differentiation, it is not the only contributing factor. Many researchers have recently attempted to design microenvironments that mimic the stem cell niche with combinations of ECM elasticity and other cues, such as ECM physical properties, soluble biochemical factors and cell–cell interactions, thereby driving cells towards their preferred lineages. Here, we briefly discuss the effect of matrix elasticity on stem cell lineage specification and then summarize recent advances in the study of the combined effects of ECM elasticity and other cues on the differentiation of stem cells, focusing on two aspects: biophysical and biochemical factors. In the future, biomedical scientists will continue investigating the union strength of matrix elasticity and microenvironmental cues for manipulating stem cell fates.


Matrix elasticity Biophysical factor Biochemical factor Stem cells Differentiation 



The authors thank William Orr, M.D., University of Manitoba, Winnipeg, Canada, for his assistance in writing. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB606201), the National Natural Science Foundation of China (Grant No. 31150007, 31201052), China Postdoctoral Science Foundation (Grant No. 20090450415 and 201003125), Bethune Medical Research Support Program and Advanced Interdisciplinary Innovation Project (Grant No. 2013101004).

Conflicts of interest

The authors declare no potential conflicts of interest.


  1. Alkhouli N, Mansfield J, Green E, Bell J, Knight B, Liversedge N, Tham JC, Welbourn R, Shore AC, Kos K, Winlove CP (2013) The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix. Am J Physiol Endocrinol Metab 305:E1427–E1435CrossRefPubMedGoogle Scholar
  2. Bajpai VK, Andreadis ST (2012) Stem cell sources for vascular tissue engineering and regeneration. Tissue Eng B 18:405–425Google Scholar
  3. Banks JM, Mozdzen LC, Harley BA, Bailey RC (2014) The combined effects of matrix stiffness and growth factor immobilization on the bioactivity and differentiation capabilities of adipose-derived stem cells. Biomaterials 35:8951–8959PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bian LM, Hou C, Tous E, Rai R, Mauck RL, Burdick JA (2013) The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials 34:413–421PubMedCentralCrossRefPubMedGoogle Scholar
  5. Buxboim A, Rajagopal K, Brown AEX, Discher DE (2010) How deeply cells feel: methods for thin gels. J Phys Condens Matter 22:194116PubMedCentralCrossRefPubMedGoogle Scholar
  6. Cameron AR, Frith JE, Cooper-White JJ (2011) The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32:5979–5993PubMedGoogle Scholar
  7. Cameron AR, Frith JE, Gomez GA, Yap AS, Cooper-White JJ (2014) The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomaterials 35:1857–1868CrossRefPubMedGoogle Scholar
  8. Cao N, Liu ZM, Chen ZY, Wang J, Chen TT, Zhao XY, Ma Y, Qin LJ, Kang JH, Wei B, Wang L, Jin Y, Yang HT (2012) Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Res 22:219–236PubMedCentralCrossRefPubMedGoogle Scholar
  9. Cheng XG, Tsao C, Sylvia VL, Cornet D, Nicolella DP, Bredbenner TL, Christy RJ (2014) Platelet-derived growth-factor-releasing aligned collagen-nanoparticle fibers promote the proliferation and tenogenic differentiation of adipose-derived stem cells. Acta Biomater 10:1360–1369CrossRefPubMedGoogle Scholar
  10. Chowdhury F, Li YZ, Poh YC, Yokohama-Tamaki T, Wang N, Tanaka TS (2010a) Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS ONE 5:e15655PubMedCentralCrossRefPubMedGoogle Scholar
  11. Chowdhury F, Na S, Li D, Poh YC, Tanaka TS, Wang F, Wang N (2010b) Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater 9:82–88PubMedCentralCrossRefPubMedGoogle Scholar
  12. Das M, Sundell IB, Koka PS (2013) Adult mesenchymal stem cells and their potency in the cell-based therapy. J Stem Cells 8:1–16PubMedGoogle Scholar
  13. De Santis G, Lennon AB, Boschetti F, Verhegghe B, Verdonck P, Prendergast PJ (2011) How can cells sense the elasticity of a substrate? an analysis using a cell tensegrity model. Eur Cell Mater 22:202–213PubMedGoogle Scholar
  14. Du J, Chen XF, Liang XD, Zhang GY, Xu J, He LR, Zhan QY, Feng XQ, Chien S, Yang C (2011) Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc Natl Acad Sci U S A 108:9466–9471PubMedCentralCrossRefPubMedGoogle Scholar
  15. Elder BD, Athanasiou KA (2009) Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng B 15:43–53Google Scholar
  16. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689CrossRefPubMedGoogle Scholar
  17. Erickson IE, Huang AH, Sengupta S, Kestle S, Burdick JA, Mauck RL (2009) Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels. Osteoarthr Cartil 17:1639–1648PubMedCentralCrossRefPubMedGoogle Scholar
  18. Faghihi F, Baghaban Eslaminejad M (2013) The effect of nano-scale topography on osteogenic differentiation of mesenchymal stem cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 158:5–16PubMedGoogle Scholar
  19. Fedorovich NE, Kuipers E, Gawlitta D, Dhert WJA, Alblas J (2011) Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors. Tissue Eng A 17:2473–2486CrossRefGoogle Scholar
  20. Feng CH, Cheng YC, Chao PHG (2013) The influence and interactions of substrate thickness, organization and dimensionality on cell morphology and migration. Acta Biomater 9:5502–5510CrossRefPubMedGoogle Scholar
  21. Fernandez-Muinos T, Suarez-Munoz M, Sanmarti-Espinal M, Semino CE (2014) Matrix dimensions, stiffness, and structural properties modulate spontaneous chondrogenic commitment of mouse embryonic fibroblasts. Tissue Eng A 20:1145–1155CrossRefGoogle Scholar
  22. Gefen A, Margulies SS (2004) Are in vivo and in situ brain tissues mechanically similar? J Biomech 37:1339–1352CrossRefPubMedGoogle Scholar
  23. Gershlak JR, Resnikoff JIN, Sullivan KE, Williams C, Wang RM, Black LD (2013) Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochem Biophys Res Commun 439:161–166CrossRefPubMedGoogle Scholar
  24. Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081PubMedCentralCrossRefPubMedGoogle Scholar
  25. Her GJ, Wu HC, Chen MH, Chen MY, Chang SC, Wang TW (2013) Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages. Acta Biomater 9:5170–5180CrossRefPubMedGoogle Scholar
  26. Higuchi A, Ling QD, Ko YA, Chang Y, Umezawa A (2011) Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev 111:3021–3035CrossRefPubMedGoogle Scholar
  27. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9:518–526PubMedCentralCrossRefPubMedGoogle Scholar
  28. Kanczler JM, Ginty PJ, White L, Clarke NMP, Howdle SM, Shakesheff KM, Oreffo ROC (2010) The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation. Biomaterials 31:1242–1250CrossRefPubMedGoogle Scholar
  29. Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10:709–716CrossRefPubMedGoogle Scholar
  30. Kim MJ, Shin KS, Jeon JH, Lee DR, Shim SH, Kim JK, Cha DH, Yoon TK, Kim GJ (2011) Human chorionic-plate-derived mesenchymal stem cells and Wharton’s jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells. Cell Tissue Res 346:53–64CrossRefPubMedGoogle Scholar
  31. Kim M, Kim YH, Tae G (2013) Human mesenchymal stem cell culture on heparin-based hydrogels and the modulation of interactions by gel elasticity and heparin amount. Acta Biomater 9:7833–7844CrossRefPubMedGoogle Scholar
  32. Kongsgaard M, Nielsen CH, Hegnsvad S, Aagaard P, Magnusson SP (2011) Mechanical properties of the human Achilles tendon, in vivo. Clin Biomech (Bristol, Avon) 26:772–777CrossRefGoogle Scholar
  33. Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ, Schoenmakers RG, Lutolf MP, Jaconi ME, Hubbell JA (2008) Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 29:2757–2766CrossRefPubMedGoogle Scholar
  34. Kshitiz, Hubbi ME, Ahn EH, Downey J, Afzal J, Kim DH, Rey S, Chang C, Kundu A, Semenza GL, Abraham RM, Levchenko A (2012) Matrix rigidity controls endothelial differentiation and morphogenesis of cardiac precursors. Sci Signal 5: ra41Google Scholar
  35. Kurpinski K, Lam H, Chu J, Wang A, Kim A, Tsay E, Agrawal S, Schaffer DV, Li S (2010) Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28:734–742CrossRefPubMedGoogle Scholar
  36. Lanniel M, Huq E, Allen S, Buttery L, Williams PM, Alexander MR (2011) Substrate induced differentiation of human mesenchymal stem cells on hydrogels with modified surface chemistry and controlled modulus. Soft Matter 7:6501–6514CrossRefGoogle Scholar
  37. Lee JH, Um S, Jang JH, Seo BM (2012) Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells. Cell Tissue Res 348:475–484CrossRefPubMedGoogle Scholar
  38. Lee BLP, Tang ZY, Wang AJ, Huang F, Yan ZQ, Wang D, Chu JS, Dixit N, Yang L, Li S (2013a) Synovial stem cells and their responses to the porosity of microfibrous scaffold. Acta Biomater 9:7264–7275PubMedCentralCrossRefPubMedGoogle Scholar
  39. Lee J, Abdeen AA, Zhang D, Kilian KA (2013b) Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34:8140–8148CrossRefPubMedGoogle Scholar
  40. Lee J, Abdeen AA, Huang TH, Kilian KA (2014) Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells. J Mech Behav Biomed Mater 38:209–218CrossRefPubMedGoogle Scholar
  41. Leong WS, Tay CY, Yu HY, Li A, Wu SC, Duc DH, Lim CT, Tan LP (2010) Thickness sensing of hMSCs on collagen gel directs stem cell fate. Biochem Biophys Res Commun 401:287–292CrossRefPubMedGoogle Scholar
  42. Li TF, Chen D, Wu Q, Chen M, Sheu TJ, Schwarz EM, Drissi H, Zuscik M, O’Keefe RJ (2006) Transforming growth factor-beta stimulates cyclin D1 expression through activation of beta-catenin signaling in chondrocytes. J Biol Chem 281:21296–21304PubMedCentralCrossRefPubMedGoogle Scholar
  43. Li ZQ, Guo XL, Palmer AF, Das H, Guan JJ (2012) High-efficiency matrix modulus-induced cardiac differentiation of human mesenchymal stem cells inside a thermosensitive hydrogel. Acta Biomater 8:3586–3595CrossRefPubMedGoogle Scholar
  44. Li Z, Gong YW, Sun SJ, Du Y, Lu DY, Liu XF, Long M (2013) Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells. Biomaterials 34:7616–7625CrossRefPubMedGoogle Scholar
  45. Lu DY, Luo CH, Zhang C, Li Z, Long M (2014) Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography. Biomaterials 35:3945–3955CrossRefPubMedGoogle Scholar
  46. Ma J, van den Beucken JJ, Yang F, Both SK, Cui FZ, Pan J, Jansen JA (2011) Coculture of osteoblasts and endothelial cells: optimization of culture medium and cell ratio. Tissue Eng C 17:349–357CrossRefGoogle Scholar
  47. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495CrossRefPubMedGoogle Scholar
  48. Morinobu M, Ishijima M, Rittling SR, Tsuji K, Yamamoto H, Nifuji A, Denhardt DT, Noda M (2003) Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. J Bone Miner Res 18:1706–1715CrossRefPubMedGoogle Scholar
  49. Murphy CM, Matsiko A, Haugh MG, Gleeson JP, O’Brien FJ (2012) Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds. J Mech Behav Biomed Mater 11:53–62CrossRefPubMedGoogle Scholar
  50. Narayanan K, Lim VY, Shen J, Tan ZW, Rajendran D, Luo SC, Gao S, Wan AC, Ying JY (2014) Extracellular matrix-mediated differentiation of human embryonic stem cells: differentiation to insulin-secreting beta cells. Tissue Eng A 20:424–433CrossRefGoogle Scholar
  51. Park IS, Han M, Rhie JW, Kim SH, Jung Y, Kim IH, Kim SH (2009) The correlation between human adipose-derived stem cells differentiation and cell adhesion mechanism. Biomaterials 30:6835–6843CrossRefPubMedGoogle Scholar
  52. Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, Li S (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials 32:3921–3930PubMedCentralCrossRefPubMedGoogle Scholar
  53. Pek YS, Wan ACA, Ying JY (2010) The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials 31:385–391CrossRefPubMedGoogle Scholar
  54. Pierini M, Dozza B, Lucarelli E, Tazzari PL, Ricci F, Remondini D, di Bella C, Giannini S, Donati D (2012) Efficient isolation and enrichment of mesenchymal stem cells from bone marrow. Cytotherapy 14:686–693CrossRefPubMedGoogle Scholar
  55. Prosecka E, Rampichova M, Vojtova L, Tvrdik D, Melcakova S, Juhasova J, Plencner M, Jakubova R, Jancar J, Necas A, Kochova P, Klepacek J, Tonar Z, Amler E (2011) Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix. J Biomed Mater Res A 99A:307–315CrossRefGoogle Scholar
  56. Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295:C1037–C1044CrossRefPubMedGoogle Scholar
  57. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95:4426–4438PubMedCentralCrossRefPubMedGoogle Scholar
  58. Sharma RI, Snedeker JG (2012) Paracrine interactions between mesenchymal stem cells affect substrate driven differentiation toward tendon and bone phenotypes. PLoS ONE 7:e31504PubMedCentralCrossRefPubMedGoogle Scholar
  59. Shi YL, Dong YH, Duan YY, Jiang XM, Chen C, Deng LH (2013) Substrate stiffness influences TGF-beta 1-induced differentiation of bronchial fibroblasts into myofibroblasts in airway remodeling. Mol Med Rep 7:419–424PubMedGoogle Scholar
  60. Shi Y, Glaser KJ, Venkatesh SK, Ben-Abraham EI, Ehman RL (2015) Feasibility of using 3D MR elastography to determine pancreatic stiffness in healthy volunteers. J Magn Reson Imaging 41:369–375Google Scholar
  61. Shih YR, Tseng KF, Lai HY, Lin CH, Lee OK (2011) Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 26:730–738CrossRefPubMedGoogle Scholar
  62. Steward AJ, Wagner DR, Kelly DJ (2013) The pericellular environment regulates cytoskeletal development and the differentiation of mesenchymal stem cells and determines their response to hydrostatic pressure. Eur Cell Mater 25:167–178PubMedGoogle Scholar
  63. Stolz M, Raiteri R, Daniels AU, VanLandingham MR, Baschong W, Aebi U (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86:3269–3283PubMedCentralCrossRefPubMedGoogle Scholar
  64. Sun YB, Villa-Diaz LG, Lam RHW, Chen WQ, Krebsbach PH, Fu JP (2012) Mechanics regulates fate decisions of human embryonic stem cells. PLoS ONE 7:e37178PubMedCentralCrossRefPubMedGoogle Scholar
  65. Sun H, Hou Z, Yang H, Meng M, Li P, Zou Q, Yang L, Chen Y, Chai H, Zhong H, Yang ZZ, Zhao J, Lai L, Jiang X, Xiao Z (2014) Multiple systemic transplantations of human amniotic mesenchymal stem cells exert therapeutic effects in an ALS mouse model. Cell Tissue Res 357:571–582CrossRefPubMedGoogle Scholar
  66. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104PubMedCentralCrossRefPubMedGoogle Scholar
  67. Tan S, Fang JY, Yang Z, Nimni ME, Han B (2014) The synergetic effect of hydrogel stiffness and growth factor on osteogenic differentiation. Biomaterials 35:5294–5306CrossRefPubMedGoogle Scholar
  68. Thie M, Rospel R, Dettmann W, Benoit M, Ludwig M, Gaub HE, Denker HW (1998) Interactions between trophoblast and uterine epithelium: monitoring of adhesive forces. Hum Reprod 13:3211–3219CrossRefPubMedGoogle Scholar
  69. Thorpe SD, Buckley CT, Steward AJ, Kelly DJ (2012) European society of biomechanics SM Perren award 2012: the external mechanical environment can override the influence of local substrate in determining stem cell fate. J Biomech 45:2483–2492CrossRefPubMedGoogle Scholar
  70. Toh WS, Lim TC, Kurisawa M, Spector M (2012) Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials 33:3835–3845CrossRefPubMedGoogle Scholar
  71. Tse JR, Engler AJ (2011) Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6:e15978PubMedCentralCrossRefPubMedGoogle Scholar
  72. Viale-Bouroncle S, Vollner F, Mohl C, Kupper K, Brockhoff G, Reichert TE, Schmalz G, Morsczeck C (2011) Soft matrix supports osteogenic differentiation of human dental follicle cells. Biochem Biophys Res Commun 410:587–592CrossRefPubMedGoogle Scholar
  73. Viale-Bouroncle S, Gosau M, Kupper K, Mohl C, Brockhoff G, Reichert TE, Schmalz G, Ettl T, Morsczeck C (2012) Rigid matrix supports osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHED). Differentiation 84:366–370CrossRefPubMedGoogle Scholar
  74. Wang LS, Boulaire J, Chan PP, Chung JE, Kurisawa M (2010) The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials 31:8608–8616CrossRefPubMedGoogle Scholar
  75. Wang LS, Du C, Chung JE, Kurisawa M (2012a) Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells. Acta Biomater 8:1826–1837CrossRefPubMedGoogle Scholar
  76. Wang PY, Tsai WB, Voelcker NH (2012b) Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients. Acta Biomater 8:519–530CrossRefPubMedGoogle Scholar
  77. Wang T, Lai JH, Han LH, Tong X, Yang F (2014) Chondrogenic differentiation of adipose-derived stromal cells in combinatorial hydrogels containing cartilage matrix proteins with decoupled mechanical stiffness. Tissue Eng A 20:2131–2139CrossRefGoogle Scholar
  78. Wen XZ, Miyake S, Akiyama Y, Yuasa Y (2004) BMP-2 modulates the proliferation and differentiation of normal and cancerous gastric cells. Biochem Biophys Res Commun 316:100–106CrossRefPubMedGoogle Scholar
  79. Winer JP, Janmey PA, McCormick ME, Funaki M (2009) Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng A 15:147–154CrossRefGoogle Scholar
  80. Wingate K, Bonani W, Tan Y, Bryant SJ, Tan W (2012) Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers. Acta Biomater 8:1440–1449PubMedCentralCrossRefPubMedGoogle Scholar
  81. Wingate K, Floren M, Tan Y, Tseng PO, Tan W (2014) Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration. Tissue Eng A 20:17–18CrossRefGoogle Scholar
  82. Xue R, Li JY, Yeh Y, Yang L, Chien S (2013) Effects of matrix elasticity and cell density on human mesenchymal stem cells differentiation. J Orthop Res 31:1360–1365CrossRefPubMedGoogle Scholar
  83. Yeager ME, Frid MG, Stenmark KR (2011) Progenitor cells in pulmonary vascular remodeling. Pulm Circ 1:3–16PubMedCentralCrossRefPubMedGoogle Scholar
  84. Young DA, Choi YS, Engler AJ, Christman KL (2013) Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials 34:8581–8588PubMedCentralCrossRefPubMedGoogle Scholar
  85. Yu B, Zhao XL, Yang CZ, Crane J, Xian LL, Lu W, Wan M, Cao X (2012) Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling. J Bone Miner Res 27:2001–2014PubMedCentralCrossRefPubMedGoogle Scholar
  86. Yu HY, Lui YS, Xiong SJ, Leong WS, Wen F, Nurkahfianto H, Rana S, Leong DT, Ng KW, Tan LP (2013a) Insights into the role of focal adhesion modulation in myogenic differentiation of human mesenchymal stem cells. Stem Cells Dev 22:136–147PubMedCentralCrossRefPubMedGoogle Scholar
  87. Yu HY, Tay CY, Pal M, Leong WS, Li HQ, Li H, Wen F, Leong DT, Tan LP (2013b) A bio-inspired platform to modulate myogenic differentiation of human mesenchymal stem cells through focal adhesion regulation. Adv Healthcare Mater 2:442–449CrossRefGoogle Scholar
  88. Zouani OF, Kalisky J, Ibarboure E, Durrieu MC (2013) Effect of BMP-2 from matrices of different stiffnesses for the modulation of stem cell fate. Biomaterials 34:2157–2166Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hongwei Lv
    • 1
    • 2
  • Lisha Li
    • 1
    Email author
  • Yin Zhang
    • 1
    • 2
  • Zhishen Chen
    • 1
    • 2
  • Meiyu Sun
    • 1
  • Tiankai Xu
    • 2
  • Licheng Tian
    • 2
  • Man Lu
    • 1
  • Min Ren
    • 1
  • Yuanyuan Liu
    • 1
  • Yulin Li
    • 1
    Email author
  1. 1.The Key Laboratory of Pathobiology, Ministry of EducationJilin UniversityChangchunChina
  2. 2.College of Public HealthJilin UniversityChangchunChina

Personalised recommendations