Skip to main content

Advertisement

Log in

Quantitative microscopy of mole rat eosinophil granule morphology

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mole rat bone marrow cells and peritoneal eosinophils are used to study granule morphological maturation by quantitative microscopy. The bulk eosinophil granule content is pre-stored in unique granular structures known as crystalloid or secondary granules. Mole rat eosinophil granules exhibit the basic structure of an electron-dense crystalloid core surrounded by a lighter, homogeneous matrix. Morphometric analysis demonstrated that bone marrow-derived eosinophil sphere-like granules display a periodic, multimodal granule volume distribution. In contrast, peritoneal eosinophils display cigar-shaped granules, whose crystalloid cores are more variable in size and shape as compared to bone marrow eosinophil granules. Using a morphometric approach, we deduced that the basic granule volume quantum is similar in both cases, suggesting that the sphere-like young eosinophil granules turn into dense ellipsoidal ones by intragranular processes in which both volume and membrane surface are conserved. Crystalloid granule mediators are known to be widely associated with allergic inflammatory events, which may damage the host tissue following secretion to the extracellular environment. Based on mathematical modeling, we suggest that this deviation from sphere-like to ellipsoidal shape reflects an adaptive response of the mole rat to its unique solitary life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amihai D, Trachtenberg S, Terkel J, Hammel I (2001) The structure of mast cell secretory granules in the blind mole rat (Spalax ehrenbergi). J Struct Biol 136:96–100

    Article  CAS  PubMed  Google Scholar 

  • Arvan P, Castle D (1998) Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 332:593–610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bainton DF, Farquhar MG (1966) Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes J Cell Biol 28:277–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bainton DF, Farquhar MG (1970) Segregation and packaging of granule enzymes in eosinophilic leukocytes. J Cell Biol 45:54–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bainton DF, Nichols BA, Farquhar MG (1976) Primary lysosomes of blood leukocytes. Front Biol 45:3–32

    CAS  PubMed  Google Scholar 

  • Bainton DF (1999) Distinct granule populations in human neutrophils and lysosomal organelles identified by immuno-electron microscopy. J Immunol Methods 232:153–168

    Article  CAS  PubMed  Google Scholar 

  • Batigália F, Boer NP, Boer ALR, Marcatto G (2012) Application of stereological methods in Health sciences. J Morphol Sci 29:210–213

    Google Scholar 

  • Bendayan M, Nanci A, Herbener GH, Grégoire S, Duhr MA (1986) A review of the study of protein secretion applying the protein A-gold immunocytochemical approach. Am J Anat 175:379–400

    Article  CAS  PubMed  Google Scholar 

  • Collins TJ (2007) ImageJ for microscopy. Biotechniques 43:25–30

    Article  PubMed  Google Scholar 

  • Coorssen JR, Blank PS, Tahara M, Zimmerberg J (1998) Biochemical and functional studies of cortical vesicle fusion: the SNARE complex and Ca2+ sensitivity. J Cell Biol 143:1845–1857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costa JJ, Weller PF, Galli SJ (1997) The cells of the allergic response: mast cells, basophils, and eosinophils. JAMA 278:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Conde Júnior AM, De Moura Fortes EA, De Menezes DJ, De Oliveira LL, De Carvalho MA (2012) Morphological and morphometric characterization of agoutis' peripheral blood cells (Dasyprocta prymnolopha, Wagler, 1831) raised in captivity. Microsc Res Tech 75:374–378

    Article  PubMed  Google Scholar 

  • Dodge FA Jr, Rahamimoff R (1967) Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol (London) 193:419–432

    Article  CAS  Google Scholar 

  • Dvorak AM, Ishizaka T (1994) Human eosinophils in vitro. An ultrastructural morphology primer. Histol Histopathol 9:339–374

    CAS  PubMed  Google Scholar 

  • Dvorak AM, Weller PF (2000) Ultrastructural analysis of human eosinophils. Chem Immunol 76:1–28

    Article  CAS  PubMed  Google Scholar 

  • Elias H (1972) Identification of structure by the common-sense approach. J Microsc 95:59–68

    Article  CAS  PubMed  Google Scholar 

  • Elias H, Hennig A, Schwartz DE (1971) Stereology: applications to biomedical research. Physiol Rev 51:158–200

    CAS  PubMed  Google Scholar 

  • Elias H, Hyde DM (1980) An elementary introduction to stereology (quantitative microscopy). Am J Anat 159:412–446

    Article  CAS  PubMed  Google Scholar 

  • Elmalek M, Hammel I (1987) Morphometric evidence that the maturation of the eosinophil granules is independent of volume change. J Submicrosc Cytol 19:265–268

    CAS  PubMed  Google Scholar 

  • Elmalek M, Hammel I (1988) Estimation of the mean caliper: a new simple approach. J Electron Microsc Tech 8:173–177

    Article  CAS  PubMed  Google Scholar 

  • Fagerland JA, Hagemoser WA, Ireland WP (1987) Ultrastructure and stereology of leukocytes and platelets of normal foxes and a fox with a Chédiak-Higashi-like syndrome. Vet Pathol 24:164–169

    CAS  PubMed  Google Scholar 

  • Farquhar MG, Palade GE (1981) The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage. J Cell Biol 91:77s–103s.

  • Fukuda T, Ackerman SJ, Reed CE, Peters MS, Dunnette SL, Gleich GJ (1985) Calcium ionophore A23187 calcium-dependent cytolytic degranulation in human eosinophils. J Immunol 135:1349–1356

    CAS  PubMed  Google Scholar 

  • Gundersen HJ (1980) Stereology–or how figures for spatial shape and content are obtained by observation of structures in sections. Microsc Acta 83:409–426

    CAS  PubMed  Google Scholar 

  • Gundersen HJG, Jensen EBV (1985) Stereological estimation of the volume-weighted mean volume of arbitrary particles observed on random sections. J Microsc 138:127–142

    Article  CAS  PubMed  Google Scholar 

  • Hammel I, Lagunoff D, Bauza M, Chi E (1983) Periodic, multimodal distribution of granule volumes in mast cells. Cell Tissue Res 228:51–9

  • Hammel I, Lagunoff D, Galli SJ (2010) Regulation of secretory granule size by the precise generation and fusion of unit granules. J Cell Mol Med 14:1904–1916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hammel I, Lagunoff D, Krüger PG (1988) Studies on the growth of mast cells in rats. Changes in granule size between 1 and 6 months. Lab Invest 59:549–554

    CAS  PubMed  Google Scholar 

  • Hammel I, Lagunoff D, Krüger PG (1989) Recovery of rat mast cells after secretion: a morphometric study. Exp Cell Res 184:518–523

    Article  CAS  PubMed  Google Scholar 

  • Hammel I, Lagunoff D, Wysolmerski R (1993) Theoretical considerations on the formation of secretory granules in the rat pancreas. Exp Cell Res 204:1–5

    Article  CAS  PubMed  Google Scholar 

  • Hammel I, Meilijson I (2012) Function suggests nano-structure: electrophysiology supports that granule membranes play dice. J R Soc Interface 9:2516–2526

    Article  PubMed Central  PubMed  Google Scholar 

  • Hammel I, Meilijson I (2013) Function suggests nano-structure: towards a unified theory for secretion rate, a statistical mechanics approach. J R Soc Interface 10:20130640. doi:10.1098/rsif.2013.0640

    Article  PubMed Central  PubMed  Google Scholar 

  • Hammel I, Meilijson I (2014) Quantal basis of secretory granule biogenesis and inventory maintenance: the surreptitious nano-machine behind it. Discoveries 2:e21. doi: 10.15190/d.2014.13.

  • Hammel I, Meilijson I (2015) The stealthy nano-machine behind mast cell granule size distribution. Mol Immunol 63:45–54

    Article  CAS  PubMed  Google Scholar 

  • Hartmann J, Scepek S, Lindau M (1995) Regulation of granule size in human and horse eosinophils by number of fusion events among unit granules. J Physiol (London) 483:201–209

    Article  CAS  Google Scholar 

  • Henderson WR, Chi EY (1985) Ultrastructural characterization and morphometric analysis of human eosinophil degranulation. J Cell Sci 73:33–48

    CAS  PubMed  Google Scholar 

  • Hennig A, Elias H (1963) Theoretical and experimental investigations of sections of rotatory ellipsoids. Z Wiss Mikrosk 65:133–145

    CAS  PubMed  Google Scholar 

  • Hubálek Z, Burda H, Scharff A, Heth G, Nevo E, Šumbera R, Peško J, Zima J (2005) Emmonsiosis of subterranean rodents (Bathyergidae, Spalacidae) in Africa and Israel. Med Mycol 43:691–697

    Article  PubMed  Google Scholar 

  • Jena BP (2009) Functional organization of the porosome complex and associated structures facilitating cellular secretion. Physiology (Bethesda) 24:367–376

    Article  CAS  Google Scholar 

  • Jena BP (2011) Role of SNAREs in Membrane Fusion. Adv Exp Med Biol 713:13–32

    Article  CAS  PubMed  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138A

    Google Scholar 

  • Kimchi T, Terkel J (2002) Seeing and not seeing. Curr Opin Neurobiol 12:728–734

    Article  CAS  PubMed  Google Scholar 

  • Křepelová-Dror M, Hammel I, Meilijson I (2014) Statistical analysis of the quantal basis of secretory granule formation. Microsc Res Tech 77:1–10

    Article  PubMed  Google Scholar 

  • Lew S, Hammel I, Galli SJ (1994) Cytoplasmic granule formation in mouse pancreatic acinar cells. Evidence for formation of immature granules (condensing vacuoles) by aggregation and fusion of progranules of unit size, and for reductions in membrane surface area and immature granule volume during granule maturation. Cell Tissue Res 278:327–336

    Article  CAS  PubMed  Google Scholar 

  • Lindau M, Nüsse O, Bennett J, Cromwell O (1993) The membrane fusion events in degranulating guinea pig eosinophils. J Cell Sci 104:203–210

    CAS  PubMed  Google Scholar 

  • Mayhew TM (1991) The new stereological methods for interpreting functional morphology from slices of cells and organs. Exp Physiol 76:639–665

    Article  CAS  PubMed  Google Scholar 

  • Melo RCN, Liu L, Xenakis JJ, Spencer LA (2013) Eosinophil-derived cytokines in health and disease: unraveling novel mechanisms of selective secretion. Allergy 68:274–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michaux G, Cutler DF (2004) How to roll an endothelial cigar: the biogenesis of Weibel-Palade bodies. Traffic 5:69–78

    Article  CAS  PubMed  Google Scholar 

  • Mrciak M, Daniel M, Rosický B (1966) Parasites and nest inhabitans of small mammals in the western Carpathians. I. Mites of the superfamily Gamasoidea (Parasitiformes). Acta Fac Rer Nat Univ Comen Zool 13:81–139

    Google Scholar 

  • Nevo E, Beiles A (1992) Selection for class II Mhc heterozygosity by parasites in subterranean mole rats. Experientia 48:512–515

    Article  CAS  PubMed  Google Scholar 

  • Nitzany E, Hammel I, Meilijson I (2010) Quantal basis of vesicle growth and information content, a unified approach. J Theor Biol 266:202–209

    Article  CAS  PubMed  Google Scholar 

  • Nyengaard JR (1999) Stereologic methods and their application in kidney research. J Am Soc Nephrol 10:1100–1123

    CAS  PubMed  Google Scholar 

  • Papahadjopoulos D, Nir S, Düzgünes N (1990) Molecular mechanisms of calcium-induced membrane fusion. J Bioenerg Biomembr 22:157–179

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13:9–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rothenberg ME, Hogan SP (2006) The Eosinophil. Annu Rev Immunol 24:147–174

    Article  CAS  PubMed  Google Scholar 

  • Scepek S, Lindau M (1997) Exocytotic competence and intergranular fusion in cord blood-derived eosinophils during differentiation. Blood 89:510–517

    CAS  PubMed  Google Scholar 

  • Scharff A, Burda H, Tenora F, Kawalika M, Barus V (1997) Parasites in social subterranean Zambian mole-rats (Cryptomys spp., Bathyergidae, Rodentia). J Zool 241:571–577

    Article  Google Scholar 

  • Schmid-Schönbein GW, Shih YY, Chien S (1980) Morphometry of human leukocytes. Blood 56:866–875

    PubMed  Google Scholar 

  • Shoichetman T, Skutelsky E, Lew S, Hammel I (2001) Changes in the distribution of anionic constituents in secretory granules of mouse pancreatic acinar cells after pilocarpine-induced degranulation. J Histochem Cytochem 49:1199–1204

    Article  CAS  PubMed  Google Scholar 

  • Sokol RJ, James NT, Wales J, Hudson G (1987) Morphometry of eosinophils in human blood. Acta Anat (Basel) 129:211–213

    Article  CAS  Google Scholar 

  • Spicer SS, Horn RG, Wetzel BK (1968) Ultrastructural and cytochemical characteristics of leukocytes in various stages of development. Biochem Pharmacol Suppl: 143–156

  • Tooze SA (1998) Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim Biophys Acta 1404:231–244

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Martínez R, Díaz-Ruiz A, Almabouada F, Rabanal-Ruiz Y, Gracia-Navarro F, Malagón MM (2012) Revisiting the regulated secretory pathway: from frogs to human. Gen Comp Endocrinol 175:1–9

    Article  PubMed  Google Scholar 

  • Vesterby A (1990) Star volume of marrow space and trabeculae in iliac crest: sampling procedure and correlation to star volume of first lumbar vertebra. Bone 11:149–155

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Valentijn KM, de Boer HC, Dirven RJ, van Zonneveld AJ, Koster AJ, Voorberg J, Reitsma PH, Eikenboom J (2011) Intracellular storage and regulated secretion of von Willebrand factor in quantitative von Willebrand disease. J Biol Chem 286:24180–24188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weibel ER (2012) Fifty years of Weibel-Palade bodies: the discovery and early history of an enigmatic organelle of endothelial cells. J Thromb Haemost 10:979–984

    Article  CAS  PubMed  Google Scholar 

  • Wertheim G, Nevo E (1971) Helminths of birds and mammals from Israel. 3. Helminths from chromosomal forms of the mole rat, Spalax ehrenbergi. J Helminthol 45:161–169

    CAS  PubMed  Google Scholar 

  • Wreford NG (1995) Theory and practice of stereological techniques applied to the estimation of cell number and nuclear volume in the testis. Microsc Res Tech 32:423–436

    Article  CAS  PubMed  Google Scholar 

  • Zuri I, Gottreich A, Terkel J (1998) Social stress in neighboring and encountering blind mole rats (Spalax ehrenbergi). Physiol Behav 64:611–620

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge Naomi Paz for her help in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilan Hammel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amihai, D., Meilijson, I., Terkel, J. et al. Quantitative microscopy of mole rat eosinophil granule morphology. Cell Tissue Res 362, 139–151 (2015). https://doi.org/10.1007/s00441-015-2189-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2189-5

Keywords

Navigation