Abstract
In light sheet-based fluorescence microscopy (LSFM), only the focal plane is illuminated by a laser light sheet. Hence, only the fluorophores within a thin volume of the specimen are excited. This reduces photo-bleaching and photo-toxic effects by several orders of magnitude compared with any other form of microscopy. Therefore, LSFM (aka single/selective-plane illumination microscopy [SPIM] or digitally scanned light sheet microscopy [DSLM]) is the technique of choice for the three-dimensional imaging of live or fixed and of small or large three-dimensional specimens. The parallel recording of millions of pixels with modern cameras provides an extremely fast acquisition speed. Recent developments address the penetration depth, the resolution and the recording speed of LSFM. The impact of LSFM on research areas such as three-dimensional cell cultures, neurosciences, plant biology and developmental biology is increasing at a rapid pace. The development of high-throughput LSFM is the next leap forward, allowing the application of LSFM in toxicology and drug discovery screening.
This is a preview of subscription content,
to check access.





Similar content being viewed by others
References
Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ (2013) Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 10:413–420. doi:10.1038/nmeth.2434
Barman I, Tan KM, Singh GP (2010) Optical sectioning using single-plane-illumination Raman imaging. J Raman Spectrosc 41:1099–1101. doi:10.1002/jrs.2785
Baumgart E, Kubitscheck U (2012) Scanned light sheet microscopy with confocal slit detection. Opt Express 20:21805–21814. doi:10.1364/OE.20.021805
Breuninger T, Greger K, Stelzer EHK (2007) Lateral modulation boosts image quality in single plane illumination fluorescence microscopy. Opt Lett 32:1938. doi:10.1364/OL.32.001938
Brito C, Simão D, Costa I, Malpique R, Pereira CI, Fernandes P, Alves PM (2012) 3D cultures of human neural progenitor cells: dopaminergic differentiation and genetic modification. [corrected]. Methods 56:452–460. doi:10.1016/j.ymeth.2012.03.005
Bruns T, Schickinger S, Wittig R, Schneckenburger H (2012) Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy. J Biomed Opt 17:101518. doi:10.1117/1.JBO.17.10.101518
Bruns T, Schickinger S, Schneckenburger H (2014) Single plane illumination module and micro-capillary approach for a wide-field microscope. J Vis Exp 90:e51993. doi:10.3791/51993
Capoulade J, Wachsmuth M, Hufnagel L, Knop M (2011) Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat Biotechnol 29:835–839. doi:10.1038/nbt.1928
Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M, Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8:1047–1049. doi:10.1038/nmeth.1744
Cella Zanacchi F, Lavagnino Z, Faretta M, Furia L, Diaspro A (2013) Light-sheet confined super-resolution using two-photon photoactivation. PLoS One 8:e67667. doi:10.1371/journal.pone.0067667
Chen B-C, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Betzig E (2014) Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998. doi:10.1126/science.1257998
Costa A, Candeo A, Fieramonti L, Valentini G, Bassi A (2013) Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy. PLoS One 8:e75646. doi:10.1371/journal.pone.0075646
Dean KM, Fiolka R (2014) Uniform and scalable light-sheets generated by extended focusing. Opt Express 22:26141. doi:10.1364/OE.22.026141
Desmaison A, Lorenzo C, Rouquette J, Ducommun B, Lobjois V (2013) A versatile sample holder for single plane illumination microscopy. J Microsc 251:128–132. doi:10.1111/jmi.12051
Dobosz M, Ntziachristos V, Scheuer W, Strobel S (2014) Multispectral fluorescence ultramicroscopy: three-dimensional visualization and automatic quantification of tumor morphology, drug penetration, and antiangiogenic treatment response. Neoplasia 16:1–W7. doi:10.1593/neo.131848
Dodt H-U, Leischner U, Schierloh A, Jährling N, Mauch CP, Deininger K, Becker K (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4:331–336. doi:10.1038/nmeth1036
Ertürk A, Becker K, Jährling N, Mauch CP, Hojer CD, Egen JG, Dodt H-U (2012) Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 7:1983–1995. doi:10.1038/nprot.2012.119
Fahrbach FO, Rohrbach A (2010) A line scanned light-sheet microscope with phase shaped self-reconstructing beams. Opt Express 18:24229–24244. doi:10.1364/OE.18.024229
Fahrbach FO, Rohrbach A (2012) Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat Commun 3:632. doi:10.1038/ncomms1646
Fahrbach FO, Gurchenkov V, Alessandri K, Nassoy P, Rohrbach A (2013a) Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation. Opt Express 21:13824–13839. doi:10.1364/OE.21.013824
Fahrbach FO, Gurchenkov V, Alessandri K, Nassoy P, Rohrbach A (2013b) Self-reconstructing sectioned Bessel beams offer submicron optical sectioning for large fields of view in light-sheet microscopy. Opt Express 21:11425–11440. doi:10.1364/OE.21.011425
Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4:309–324. doi:10.1038/nprot.2008.226
Gao L, Shao L, Higgins CD, Poulton JS, Peifer M, Davidson MW, Betzig E (2012) Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151:1370–1385. doi:10.1016/j.cell.2012.10.008
Gao L, Shao L, Chen B-C, Betzig E (2014) 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat Protoc 9:1083–1101. doi:10.1038/nprot.2014.087
Gebhardt JCM, Suter DM, Roy R, Zhao ZW, Chapman AR, Basu S, Xie XS (2013) Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods 10:421–426. doi:10.1038/nmeth.2411
Greger K, Neetz MJ, Reynaud EG, Stelzer EHK (2011) Three-dimensional fluorescence lifetime imaging with a single plane illumination microscope provides an improved signal to noise ratio. Opt Express 19:20743–20750. doi:10.1364/OE.19.020743
Gualda EJ, Simão D, Pinto C, Alves PM, Brito C (2014) Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy. Front Cell Neurosci 8:221. doi:10.3389/fncel.2014.00221
Hammen GF, Turaga D, Holy TE, Meeks JP (2014) Functional organization of glomerular maps in the mouse accessory olfactory bulb. Nat Neurosci 17:953–961. doi:10.1038/nn.3738
Huisken J (2012) Slicing embryos gently with laser light sheets. Bioessays 34:406–411. doi:10.1002/bies.201100120
Huisken J, Stainier DYR (2007) Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt Lett 32:2608. doi:10.1364/OL.32.002608
Huisken J, Stainier DYR (2009) Selective plane illumination microscopy techniques in developmental biology. Development 136:1963–1975. doi:10.1242/dev.022426
Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009. doi:10.1126/science.1100035
Kasthuri N, Lichtman JW (2007) The rise of the “projectome”. Nat Methods 4:307–308. doi:10.1038/nmeth0407-307
Keller PJ (2013) Imaging morphogenesis: technological advances and biological insights. Science 340:1234168. doi:10.1126/science.1234168
Keller PJ, Dodt H-U (2012) Light sheet microscopy of living or cleared specimens. Curr Opin Neurobiol 22:138–143. doi:10.1016/j.conb.2011.08.003
Keller PJ, Pampaloni F, Lattanzi G, Stelzer EHK (2008a) Three-dimensional microtubule behavior in Xenopus egg extracts reveals four dynamic states and state-dependent elastic properties. Biophys J 95:1474–1486. doi:10.1529/biophysj.107.128223
Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008b) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069. doi:10.1126/science.1162493
Krieger JW, Singh AP, Garbe CS, Wohland T, Langowski J (2014) Dual-color fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS). Opt Express 22:2358–2375. doi:10.1364/OE.22.002358
Krzic U, Gunther S, Saunders TE, Streichan SJ, Hufnagel L (2012) Multiview light-sheet microscope for rapid in toto imaging. Nat Methods 9:730–733. doi:10.1038/nmeth.2064
Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379. doi:10.1038/nature12517
Lorenzo C, Frongia C, Jorand R, Fehrenbach J, Weiss P, Maandhui A, Lobjois V (2011) Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy. Cell Div 6:22. doi:10.1186/1747-1028-6-22
Lucas M, Kenobi K, von Wangenheim D, Voβ U, Swarup K, De Smet I, Bennett MJ (2013) Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proc Natl Acad Sci U S A 110:5229–5234. doi:10.1073/pnas.1210807110
Mahou P, Vermot J, Beaurepaire E, Supatto W (2014) Multicolor two-photon light-sheet microscopy. Nat Methods 11:600–601. doi:10.1038/nmeth.2963
Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer EHK (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:377–385. doi:10.1111/j.1365-313X.2011.04692.x
Mappes T, Jahr N, Csaki A, Vogler N, Popp J, Fritzsche W (2012) The invention of immersion ultramicroscopy in 1912—the birth of nanotechnology? Angew Chem 51:11208–11212. doi:10.1002/anie.201204688
McLachlan D Jr (1964) Extreme focal depth in microscopy. Appl Opt 3:1009. doi:10.1364/AO.3.001009
McLachlan D Jr (1968) Microscope. US. Retrieved from https://www.google.com/patents/US3398634?dq=D.+McLachlan+j.+microscope&hl=en&sa=X&ei=na8HVMh9wbI8_uWBoAI&ved=0CCIQ6AEwAA
Mickoleit M, Schmid B, Weber M, Fahrbach FO, Hombach S, Reischauer S, Huisken J (2014) High-resolution reconstruction of the beating zebrafish heart. Nat Methods 11:919-922. doi:10.1038/nmeth.3037
Neil MAA, Juskaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22:1905. doi:10.1364/OL.22.001905
Niedworok CJ, Schwarz I, Ledderose J, Giese G, Conzelmann K-K, Schwarz MK (2012) Charting monosynaptic connectivity maps by two-color light-sheet fluorescence microscopy. Cell Rep 2:1375–1386. doi:10.1016/j.celrep.2012.10.008
Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214. doi:10.1038/nature13186
Olarte OE, Licea-Rodriguez J, Palero JA, Gualda EJ, Artigas D, Mayer J, Loza-Alvarez P (2012) Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles. Biomed Opt Express 3:1492–1505. doi:10.1364/BOE.3.001492
Oshima Y, Sato H, Kajiura-Kobayashi H, Kimura T, Naruse K, Nonaka S (2012) Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope. Opt Express 20:16195. doi:10.1364/OE.20.016195
Osten P, Margrie TW (2013) Mapping brain circuitry with a light microscope. Nat Methods 10:515–523. doi:10.1038/nmeth.2477
Pampaloni F, Stelzer E (2010) Three-dimensional cell cultures in toxicology. Biotechnol Genet Eng Rev 26:117–38. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21415878
Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845. doi:10.1038/nrm2236
Pampaloni F, Stelzer EHK, Masotti A (2009) Three-dimensional tissue models for drug discovery and toxicology. Recent Patents Biotechnol 3:103–117. doi:10.2174/187220809788700201
Pampaloni F, Ansari N, Stelzer EHK (2013) High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res 352:161–177. doi:10.1007/s00441-013-1589-7
Pampaloni F, Berge U, Marmaras A, Horvath P, Kroschewski R, Stelzer EHK (2014a) Tissue-culture light sheet fluorescence microscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under controlled conditions. Integr Biol (Camb) 6:988-998. doi:10.1039/c4ib00121d
Pampaloni F, Stelzer EHK, Mattheyer C (2014b) Kapillarzelle, anordnung und verfahren zur aufnahme, zur positionierung und zur untersuchung einer mikroskopischen probe. Retrieved from https://www.google.com/patents/WO2014033320A1?cl=de&dq=francesco+pampaloni&hl=en&sa=X&ei=_yIUVMjOHcHMyAPRq4GwDQ&ved=0CDsQ6AEwBA
Pampaloni F, Richa R, Ansari N, Stelzer EHK (2015) Live spheroid formation recorded with light sheet-based fluorescence microscopy. Methods Mol Biol 1251:43-57. doi: 10.1007/978-1-4939-2080-8_3
Pantazis P, Supatto W (2014) Advances in whole-embryo imaging: a quantitative transition is underway. Nat Rev Mol Cell Biol 15:327–339. doi:10.1038/nrm3786
Patra B, Peng Y-S, Peng C-C, Liao W-H, Chen Y-A, Lin K-H, Lee C-H (2014) Migration and vascular lumen formation of endothelial cells in cancer cell spheroids of various sizes. Biomicrofluidics 8:052109. doi:10.1063/1.4895568
Pitrone PG, Schindelin J, Stuyvenberg L, Preibisch S, Weber M, Eliceiri KW, Tomancak P (2013) OpenSPIM: an open-access light-sheet microscopy platform. Nat Methods 10:598–599. doi:10.1038/nmeth.2507
Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA, Galbraith CG, Betzig E (2011) Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 8:417–423. doi:10.1038/nmeth.1586
Preibisch S, Saalfeld S, Schindelin J, Tomancak P (2010) Software for bead-based registration of selective plane illumination microscopy data. Nat Methods 7:418–419. doi:10.1038/nmeth0610-418
Preibisch S, Amat F, Stamataki E, Sarov M, Singer RH, Myers E, Tomancak P (2014) Efficient Bayesian-based multiview deconvolution. Nat Methods 11:645–648. doi:10.1038/nmeth.2929
Ritter JG, Veith R, Veenendaal A, Siebrasse JP, Kubitscheck U (2010) Light sheet microscopy for single molecule tracking in living tissue. PLoS One 5:e11639. doi:10.1371/journal.pone.0011639
Rosquete MR, von Wangenheim D, Marhavý P, Barbez E, Stelzer EHK, Benková E, Kleine-Vehn J (2013) An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr Biol 23:817–822. doi:10.1016/j.cub.2013.03.064
Sankaran J, Shi X, Ho LY, Stelzer EHK, Wohland T (2010) ImFCS: a software for imaging FCS data analysis and visualization. Opt Express 18:25468–25481. doi:10.1364/OE.18.025468
Schmid B, Shah G, Scherf N, Weber M, Thierbach K, Campos CP, Huisken J (2013) High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat Commun 4:2207. doi:10.1038/ncomms3207
Sena G, Frentz Z, Birnbaum KD, Leibler S (2011) Quantitation of cellular dynamics in growing Arabidopsis roots with light sheet microscopy. PLoS One 6:e21303. doi:10.1371/journal.pone.0021303
Siedentopf H, Zsigmondy R (1902) Über Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann Phys 315:1–39. doi:10.1002/andp.19023150102
Silvestri L, Bria A, Sacconi L, Iannello G, Pavone FS (2012) Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt Express 20:20582–20598. doi:10.1364/OE.20.020582
Silvestri L, Bria A, Costantini I, Sacconi L, Peng H, Iannello G, Pavone FS (2013) Micron-scale resolution optical tomography of entire mouse brains with confocal light sheet microscopy. J Vis Exp 80:e50696. doi:10.3791/50696
Singh AP, Krieger JW, Buchholz J, Charbon E, Langowski J, Wohland T (2013) The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy. Opt Express 21:8652–8668. doi:10.1364/OE.21.008652
Spence RD, Kurth F, Itoh N, Mongerson CRL, Wailes SH, Peng MS, MacKenzie-Graham AJ (2014) Bringing CLARITY to gray matter atrophy. Neuroimage 101:625-632. doi:10.1016/j.neuroimage.2014.07.017
Stelzer EHK, Lindek S (1994) Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy. Opt Commun 111:536–547. doi:10.1016/0030-4018(94)90533-9
Strobl F, Stelzer EHK (2014) Non-invasive long-term fluorescence live imaging of Tribolium castaneum embryos. Development 141:2331–2338. doi:10.1242/dev.108795
Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, Ueda HR (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157:726–739. doi:10.1016/j.cell.2014.03.042
Swoger J, Pampaloni F, Stelzer EHK (2014a) Imaging cellular spheroids with a single (selective) plane illumination microscope. Cold Spring Harb Protoc 2014:106–113. doi:10.1101/pdb.prot080176
Swoger J, Pampaloni F, Stelzer EHK (2014b) Light-sheet-based fluorescence microscopy for three-dimensional imaging of biological samples. Cold Spring Harb Protoc 2014:1–8. doi:10.1101/pdb.top080168
Temerinac-Ott M, Ronneberger O, Ochs P, Driever W, Brox T, Burkhardt H (2012) Multiview deblurring for 3-D images from light-sheet-based fluorescence microscopy. IEEE Trans Image Process 21:1863–1873. doi:10.1109/TIP.2011.2181528
Tomer R, Khairy K, Keller PJ (2011) Shedding light on the system: studying embryonic development with light sheet microscopy. Curr Opin Genet Dev 21:558–565. doi:10.1016/j.gde.2011.07.003
Tomer R, Khairy K, Amat F, Keller PJ (2012) Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods 9:755–763. doi:10.1038/nmeth.2062
Tomer R, Ye L, Hsueh B, Deisseroth K (2014) Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 9:1682–1697. doi:10.1038/nprot.2014.123
Truong TV, Supatto W, Koos DS, Choi JM, Fraser SE (2011) Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat Methods 8:757–760. doi:10.1038/nmeth.1652
Turaga D, Holy TE (2012) Organization of vomeronasal sensory coding revealed by fast volumetric calcium imaging. J Neurosci 32:1612–1621. doi:10.1523/JNEUROSCI. 5339-11.2012
Vermeer JEM, von Wangenheim D, Barberon M, Lee Y, Stelzer EHK, Maizel A, Geldner N (2014) A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343:178–183. doi:10.1126/science.1245871
Verveer PJ, Swoger J, Pampaloni F, Greger K, Marcello M, Stelzer EHK (2007) High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat Methods 4:311–313. doi:10.1038/NMETH1017
Vettenburg T, Dalgarno HIC, Nylk J, Coll-Lladó C, Ferrier DEK, Čižmár T, Dholakia K (2014) Light-sheet microscopy using an Airy beam. Nat Methods 11:541–544. doi:10.1038/nmeth.2922
Vladimirov N, Mu Y, Kawashima T, Bennett DV, Yang C-T, Looger LL, Ahrens MB (2014) Light-sheet functional imaging in fictively behaving zebrafish. Nat Methods 11:883-884. doi:10.1038/nmeth.3040
Voie AH (2002) Imaging the intact guinea pig tympanic bulla by orthogonal-plane fluorescence optical sectioning microscopy. Hear Res 171:119–128. doi:10.1016/S0378-5955(02)00493-8
Voie AH, Spelman FA (1995) Three-dimensional reconstruction of the cochlea from two-dimensional images of optical sections. Comput Med Imaging Graph 19:377–384. doi:10.1016/0895-6111(95)00034-8
Voie AH, Burns DH, Spelman FA (1993) Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc 170:229–236. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8371260
Weber M, Huisken J (2011) Light sheet microscopy for real-time developmental biology. Curr Opin Genet Dev 21:566–572. doi:10.1016/j.gde.2011.09.009
Weber M, Huisken J (2012) Omnidirectional microscopy. Nat Methods 9:656–657. doi:10.1038/nmeth.2022
Wohland T, Shi X, Sankaran J, Stelzer EHK (2010) Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 18:10627–10641. doi:10.1364/OE.18.010627
Wu J, Li J, Chan RKY (2013) A light sheet based high throughput 3D-imaging flow cytometer for phytoplankton analysis. Opt Express 21:14474–14480. doi:10.1364/OE.21.014474
Wu Y, Ghitani A, Christensen R, Santella A, Du Z, Rondeau G, Shroff H (2011) Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 108:17708–17713. doi:10.1073/pnas.1108494108
Wu Y, Wawrzusin P, Senseney J, Fischer RS, Christensen R, Santella A, Shroff H (2013) Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol 31:1032–1038. doi:10.1038/nbt.2713
Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen C-K, Lubeck E, Gradinaru V (2014) Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158:945–958. doi:10.1016/j.cell.2014.07.017
Zhang P, Phipps ME, Goodwin PM, Werner JH (2014) Confocal line scanning of a Bessel beam for fast 3D imaging. Opt Lett 39:3682–3685. doi:10.1364/OL.39.003682
Acknowledgments
We thank Nariman Ansari for many discussions on 3D cell culture, Daniel von Wangenheim for the comments on LSFM applications in plant research and Christian Mattheyer for his contribution to optical clearing.
Author information
Authors and Affiliations
Corresponding author
Additional information
The research of the authors was funded by the Cluster of Excellence for Macromolecular Complexes (CEF-MC, EXC-115) granted to the Goethe Universität Frankfurt am Main by the Deutsche Forschungsgemeinschaft (DFG) and by the German Ministry for Education and Research (BMBF, Forschungsschwerpunkt Biophotonik IV, project ProMEBS) and additionally by the National Science Council (NSC100-2917-I-564-030) in Taiwan, R.O.C. and EMBO (ASTF 404–2012).
Rights and permissions
About this article
Cite this article
Pampaloni, F., Chang, BJ. & Stelzer, E.H.K. Light sheet-based fluorescence microscopy (LSFM) for the quantitative imaging of cells and tissues. Cell Tissue Res 360, 129–141 (2015). https://doi.org/10.1007/s00441-015-2144-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00441-015-2144-5