Light sheet-based fluorescence microscopy (LSFM) for the quantitative imaging of cells and tissues

An Erratum to this article was published on 14 July 2015

Abstract

In light sheet-based fluorescence microscopy (LSFM), only the focal plane is illuminated by a laser light sheet. Hence, only the fluorophores within a thin volume of the specimen are excited. This reduces photo-bleaching and photo-toxic effects by several orders of magnitude compared with any other form of microscopy. Therefore, LSFM (aka single/selective-plane illumination microscopy [SPIM] or digitally scanned light sheet microscopy [DSLM]) is the technique of choice for the three-dimensional imaging of live or fixed and of small or large three-dimensional specimens. The parallel recording of millions of pixels with modern cameras provides an extremely fast acquisition speed. Recent developments address the penetration depth, the resolution and the recording speed of LSFM. The impact of LSFM on research areas such as three-dimensional cell cultures, neurosciences, plant biology and developmental biology is increasing at a rapid pace. The development of high-throughput LSFM is the next leap forward, allowing the application of LSFM in toxicology and drug discovery screening.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ (2013) Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 10:413–420. doi:10.1038/nmeth.2434

    CAS  PubMed  Google Scholar 

  2. Barman I, Tan KM, Singh GP (2010) Optical sectioning using single-plane-illumination Raman imaging. J Raman Spectrosc 41:1099–1101. doi:10.1002/jrs.2785

    CAS  Google Scholar 

  3. Baumgart E, Kubitscheck U (2012) Scanned light sheet microscopy with confocal slit detection. Opt Express 20:21805–21814. doi:10.1364/OE.20.021805

    PubMed  Google Scholar 

  4. Breuninger T, Greger K, Stelzer EHK (2007) Lateral modulation boosts image quality in single plane illumination fluorescence microscopy. Opt Lett 32:1938. doi:10.1364/OL.32.001938

    PubMed  Google Scholar 

  5. Brito C, Simão D, Costa I, Malpique R, Pereira CI, Fernandes P, Alves PM (2012) 3D cultures of human neural progenitor cells: dopaminergic differentiation and genetic modification. [corrected]. Methods 56:452–460. doi:10.1016/j.ymeth.2012.03.005

    CAS  PubMed  Google Scholar 

  6. Bruns T, Schickinger S, Wittig R, Schneckenburger H (2012) Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy. J Biomed Opt 17:101518. doi:10.1117/1.JBO.17.10.101518

    PubMed  Google Scholar 

  7. Bruns T, Schickinger S, Schneckenburger H (2014) Single plane illumination module and micro-capillary approach for a wide-field microscope. J Vis Exp 90:e51993. doi:10.3791/51993

    PubMed  Google Scholar 

  8. Capoulade J, Wachsmuth M, Hufnagel L, Knop M (2011) Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat Biotechnol 29:835–839. doi:10.1038/nbt.1928

    CAS  PubMed  Google Scholar 

  9. Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M, Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8:1047–1049. doi:10.1038/nmeth.1744

    PubMed  Google Scholar 

  10. Cella Zanacchi F, Lavagnino Z, Faretta M, Furia L, Diaspro A (2013) Light-sheet confined super-resolution using two-photon photoactivation. PLoS One 8:e67667. doi:10.1371/journal.pone.0067667

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Chen B-C, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Betzig E (2014) Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998. doi:10.1126/science.1257998

    PubMed Central  PubMed  Google Scholar 

  12. Costa A, Candeo A, Fieramonti L, Valentini G, Bassi A (2013) Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy. PLoS One 8:e75646. doi:10.1371/journal.pone.0075646

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Dean KM, Fiolka R (2014) Uniform and scalable light-sheets generated by extended focusing. Opt Express 22:26141. doi:10.1364/OE.22.026141

    PubMed  Google Scholar 

  14. Desmaison A, Lorenzo C, Rouquette J, Ducommun B, Lobjois V (2013) A versatile sample holder for single plane illumination microscopy. J Microsc 251:128–132. doi:10.1111/jmi.12051

    CAS  PubMed  Google Scholar 

  15. Dobosz M, Ntziachristos V, Scheuer W, Strobel S (2014) Multispectral fluorescence ultramicroscopy: three-dimensional visualization and automatic quantification of tumor morphology, drug penetration, and antiangiogenic treatment response. Neoplasia 16:1–W7. doi:10.1593/neo.131848

    PubMed Central  PubMed  Google Scholar 

  16. Dodt H-U, Leischner U, Schierloh A, Jährling N, Mauch CP, Deininger K, Becker K (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4:331–336. doi:10.1038/nmeth1036

    CAS  PubMed  Google Scholar 

  17. Ertürk A, Becker K, Jährling N, Mauch CP, Hojer CD, Egen JG, Dodt H-U (2012) Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 7:1983–1995. doi:10.1038/nprot.2012.119

    PubMed  Google Scholar 

  18. Fahrbach FO, Rohrbach A (2010) A line scanned light-sheet microscope with phase shaped self-reconstructing beams. Opt Express 18:24229–24244. doi:10.1364/OE.18.024229

    PubMed  Google Scholar 

  19. Fahrbach FO, Rohrbach A (2012) Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat Commun 3:632. doi:10.1038/ncomms1646

    PubMed  Google Scholar 

  20. Fahrbach FO, Gurchenkov V, Alessandri K, Nassoy P, Rohrbach A (2013a) Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation. Opt Express 21:13824–13839. doi:10.1364/OE.21.013824

    CAS  PubMed  Google Scholar 

  21. Fahrbach FO, Gurchenkov V, Alessandri K, Nassoy P, Rohrbach A (2013b) Self-reconstructing sectioned Bessel beams offer submicron optical sectioning for large fields of view in light-sheet microscopy. Opt Express 21:11425–11440. doi:10.1364/OE.21.011425

    PubMed  Google Scholar 

  22. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4:309–324. doi:10.1038/nprot.2008.226

    CAS  PubMed  Google Scholar 

  23. Gao L, Shao L, Higgins CD, Poulton JS, Peifer M, Davidson MW, Betzig E (2012) Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151:1370–1385. doi:10.1016/j.cell.2012.10.008

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Gao L, Shao L, Chen B-C, Betzig E (2014) 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat Protoc 9:1083–1101. doi:10.1038/nprot.2014.087

    CAS  PubMed  Google Scholar 

  25. Gebhardt JCM, Suter DM, Roy R, Zhao ZW, Chapman AR, Basu S, Xie XS (2013) Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods 10:421–426. doi:10.1038/nmeth.2411

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Greger K, Neetz MJ, Reynaud EG, Stelzer EHK (2011) Three-dimensional fluorescence lifetime imaging with a single plane illumination microscope provides an improved signal to noise ratio. Opt Express 19:20743–20750. doi:10.1364/OE.19.020743

    CAS  PubMed  Google Scholar 

  27. Gualda EJ, Simão D, Pinto C, Alves PM, Brito C (2014) Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy. Front Cell Neurosci 8:221. doi:10.3389/fncel.2014.00221

    PubMed Central  PubMed  Google Scholar 

  28. Hammen GF, Turaga D, Holy TE, Meeks JP (2014) Functional organization of glomerular maps in the mouse accessory olfactory bulb. Nat Neurosci 17:953–961. doi:10.1038/nn.3738

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Huisken J (2012) Slicing embryos gently with laser light sheets. Bioessays 34:406–411. doi:10.1002/bies.201100120

    PubMed  Google Scholar 

  30. Huisken J, Stainier DYR (2007) Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt Lett 32:2608. doi:10.1364/OL.32.002608

    PubMed  Google Scholar 

  31. Huisken J, Stainier DYR (2009) Selective plane illumination microscopy techniques in developmental biology. Development 136:1963–1975. doi:10.1242/dev.022426

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009. doi:10.1126/science.1100035

    CAS  PubMed  Google Scholar 

  33. Kasthuri N, Lichtman JW (2007) The rise of the “projectome”. Nat Methods 4:307–308. doi:10.1038/nmeth0407-307

    CAS  PubMed  Google Scholar 

  34. Keller PJ (2013) Imaging morphogenesis: technological advances and biological insights. Science 340:1234168. doi:10.1126/science.1234168

    PubMed  Google Scholar 

  35. Keller PJ, Dodt H-U (2012) Light sheet microscopy of living or cleared specimens. Curr Opin Neurobiol 22:138–143. doi:10.1016/j.conb.2011.08.003

    CAS  PubMed  Google Scholar 

  36. Keller PJ, Pampaloni F, Lattanzi G, Stelzer EHK (2008a) Three-dimensional microtubule behavior in Xenopus egg extracts reveals four dynamic states and state-dependent elastic properties. Biophys J 95:1474–1486. doi:10.1529/biophysj.107.128223

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008b) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069. doi:10.1126/science.1162493

    CAS  PubMed  Google Scholar 

  38. Krieger JW, Singh AP, Garbe CS, Wohland T, Langowski J (2014) Dual-color fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS). Opt Express 22:2358–2375. doi:10.1364/OE.22.002358

    PubMed  Google Scholar 

  39. Krzic U, Gunther S, Saunders TE, Streichan SJ, Hufnagel L (2012) Multiview light-sheet microscope for rapid in toto imaging. Nat Methods 9:730–733. doi:10.1038/nmeth.2064

    CAS  PubMed  Google Scholar 

  40. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379. doi:10.1038/nature12517

    CAS  PubMed  Google Scholar 

  41. Lorenzo C, Frongia C, Jorand R, Fehrenbach J, Weiss P, Maandhui A, Lobjois V (2011) Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy. Cell Div 6:22. doi:10.1186/1747-1028-6-22

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Lucas M, Kenobi K, von Wangenheim D, Voβ U, Swarup K, De Smet I, Bennett MJ (2013) Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proc Natl Acad Sci U S A 110:5229–5234. doi:10.1073/pnas.1210807110

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Mahou P, Vermot J, Beaurepaire E, Supatto W (2014) Multicolor two-photon light-sheet microscopy. Nat Methods 11:600–601. doi:10.1038/nmeth.2963

    CAS  PubMed  Google Scholar 

  44. Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer EHK (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:377–385. doi:10.1111/j.1365-313X.2011.04692.x

    CAS  PubMed  Google Scholar 

  45. Mappes T, Jahr N, Csaki A, Vogler N, Popp J, Fritzsche W (2012) The invention of immersion ultramicroscopy in 1912—the birth of nanotechnology? Angew Chem 51:11208–11212. doi:10.1002/anie.201204688

    CAS  Google Scholar 

  46. McLachlan D Jr (1964) Extreme focal depth in microscopy. Appl Opt 3:1009. doi:10.1364/AO.3.001009

    Google Scholar 

  47. McLachlan D Jr (1968) Microscope. US. Retrieved from https://www.google.com/patents/US3398634?dq=D.+McLachlan+j.+microscope&hl=en&sa=X&ei=na8HVMh9wbI8_uWBoAI&ved=0CCIQ6AEwAA

  48. Mickoleit M, Schmid B, Weber M, Fahrbach FO, Hombach S, Reischauer S, Huisken J (2014) High-resolution reconstruction of the beating zebrafish heart. Nat Methods 11:919-922. doi:10.1038/nmeth.3037

    CAS  PubMed  Google Scholar 

  49. Neil MAA, Juskaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22:1905. doi:10.1364/OL.22.001905

    CAS  PubMed  Google Scholar 

  50. Niedworok CJ, Schwarz I, Ledderose J, Giese G, Conzelmann K-K, Schwarz MK (2012) Charting monosynaptic connectivity maps by two-color light-sheet fluorescence microscopy. Cell Rep 2:1375–1386. doi:10.1016/j.celrep.2012.10.008

    CAS  PubMed  Google Scholar 

  51. Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214. doi:10.1038/nature13186

    CAS  PubMed  Google Scholar 

  52. Olarte OE, Licea-Rodriguez J, Palero JA, Gualda EJ, Artigas D, Mayer J, Loza-Alvarez P (2012) Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles. Biomed Opt Express 3:1492–1505. doi:10.1364/BOE.3.001492

    PubMed Central  PubMed  Google Scholar 

  53. Oshima Y, Sato H, Kajiura-Kobayashi H, Kimura T, Naruse K, Nonaka S (2012) Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope. Opt Express 20:16195. doi:10.1364/OE.20.016195

    CAS  Google Scholar 

  54. Osten P, Margrie TW (2013) Mapping brain circuitry with a light microscope. Nat Methods 10:515–523. doi:10.1038/nmeth.2477

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Pampaloni F, Stelzer E (2010) Three-dimensional cell cultures in toxicology. Biotechnol Genet Eng Rev 26:117–38. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21415878

    CAS  PubMed  Google Scholar 

  56. Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845. doi:10.1038/nrm2236

    CAS  PubMed  Google Scholar 

  57. Pampaloni F, Stelzer EHK, Masotti A (2009) Three-dimensional tissue models for drug discovery and toxicology. Recent Patents Biotechnol 3:103–117. doi:10.2174/187220809788700201

    CAS  Google Scholar 

  58. Pampaloni F, Ansari N, Stelzer EHK (2013) High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res 352:161–177. doi:10.1007/s00441-013-1589-7

    PubMed  Google Scholar 

  59. Pampaloni F, Berge U, Marmaras A, Horvath P, Kroschewski R, Stelzer EHK (2014a) Tissue-culture light sheet fluorescence microscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under controlled conditions. Integr Biol (Camb) 6:988-998. doi:10.1039/c4ib00121d

    CAS  Google Scholar 

  60. Pampaloni F, Stelzer EHK, Mattheyer C (2014b) Kapillarzelle, anordnung und verfahren zur aufnahme, zur positionierung und zur untersuchung einer mikroskopischen probe. Retrieved from https://www.google.com/patents/WO2014033320A1?cl=de&dq=francesco+pampaloni&hl=en&sa=X&ei=_yIUVMjOHcHMyAPRq4GwDQ&ved=0CDsQ6AEwBA

  61. Pampaloni F, Richa R, Ansari N, Stelzer EHK (2015) Live spheroid formation recorded with light sheet-based fluorescence microscopy. Methods Mol Biol 1251:43-57. doi: 10.1007/978-1-4939-2080-8_3

    PubMed  Google Scholar 

  62. Pantazis P, Supatto W (2014) Advances in whole-embryo imaging: a quantitative transition is underway. Nat Rev Mol Cell Biol 15:327–339. doi:10.1038/nrm3786

    CAS  PubMed  Google Scholar 

  63. Patra B, Peng Y-S, Peng C-C, Liao W-H, Chen Y-A, Lin K-H, Lee C-H (2014) Migration and vascular lumen formation of endothelial cells in cancer cell spheroids of various sizes. Biomicrofluidics 8:052109. doi:10.1063/1.4895568

    PubMed  Google Scholar 

  64. Pitrone PG, Schindelin J, Stuyvenberg L, Preibisch S, Weber M, Eliceiri KW, Tomancak P (2013) OpenSPIM: an open-access light-sheet microscopy platform. Nat Methods 10:598–599. doi:10.1038/nmeth.2507

    CAS  PubMed  Google Scholar 

  65. Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA, Galbraith CG, Betzig E (2011) Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 8:417–423. doi:10.1038/nmeth.1586

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Preibisch S, Saalfeld S, Schindelin J, Tomancak P (2010) Software for bead-based registration of selective plane illumination microscopy data. Nat Methods 7:418–419. doi:10.1038/nmeth0610-418

    CAS  PubMed  Google Scholar 

  67. Preibisch S, Amat F, Stamataki E, Sarov M, Singer RH, Myers E, Tomancak P (2014) Efficient Bayesian-based multiview deconvolution. Nat Methods 11:645–648. doi:10.1038/nmeth.2929

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Ritter JG, Veith R, Veenendaal A, Siebrasse JP, Kubitscheck U (2010) Light sheet microscopy for single molecule tracking in living tissue. PLoS One 5:e11639. doi:10.1371/journal.pone.0011639

    PubMed Central  PubMed  Google Scholar 

  69. Rosquete MR, von Wangenheim D, Marhavý P, Barbez E, Stelzer EHK, Benková E, Kleine-Vehn J (2013) An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr Biol 23:817–822. doi:10.1016/j.cub.2013.03.064

    CAS  PubMed  Google Scholar 

  70. Sankaran J, Shi X, Ho LY, Stelzer EHK, Wohland T (2010) ImFCS: a software for imaging FCS data analysis and visualization. Opt Express 18:25468–25481. doi:10.1364/OE.18.025468

    PubMed  Google Scholar 

  71. Schmid B, Shah G, Scherf N, Weber M, Thierbach K, Campos CP, Huisken J (2013) High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat Commun 4:2207. doi:10.1038/ncomms3207

    PubMed Central  PubMed  Google Scholar 

  72. Sena G, Frentz Z, Birnbaum KD, Leibler S (2011) Quantitation of cellular dynamics in growing Arabidopsis roots with light sheet microscopy. PLoS One 6:e21303. doi:10.1371/journal.pone.0021303

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Siedentopf H, Zsigmondy R (1902) Über Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann Phys 315:1–39. doi:10.1002/andp.19023150102

    Google Scholar 

  74. Silvestri L, Bria A, Sacconi L, Iannello G, Pavone FS (2012) Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt Express 20:20582–20598. doi:10.1364/OE.20.020582

    CAS  PubMed  Google Scholar 

  75. Silvestri L, Bria A, Costantini I, Sacconi L, Peng H, Iannello G, Pavone FS (2013) Micron-scale resolution optical tomography of entire mouse brains with confocal light sheet microscopy. J Vis Exp 80:e50696. doi:10.3791/50696

    Google Scholar 

  76. Singh AP, Krieger JW, Buchholz J, Charbon E, Langowski J, Wohland T (2013) The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy. Opt Express 21:8652–8668. doi:10.1364/OE.21.008652

    CAS  PubMed  Google Scholar 

  77. Spence RD, Kurth F, Itoh N, Mongerson CRL, Wailes SH, Peng MS, MacKenzie-Graham AJ (2014) Bringing CLARITY to gray matter atrophy. Neuroimage 101:625-632. doi:10.1016/j.neuroimage.2014.07.017

    PubMed Central  PubMed  Google Scholar 

  78. Stelzer EHK, Lindek S (1994) Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy. Opt Commun 111:536–547. doi:10.1016/0030-4018(94)90533-9

    Google Scholar 

  79. Strobl F, Stelzer EHK (2014) Non-invasive long-term fluorescence live imaging of Tribolium castaneum embryos. Development 141:2331–2338. doi:10.1242/dev.108795

    CAS  PubMed  Google Scholar 

  80. Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, Ueda HR (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157:726–739. doi:10.1016/j.cell.2014.03.042

    CAS  PubMed  Google Scholar 

  81. Swoger J, Pampaloni F, Stelzer EHK (2014a) Imaging cellular spheroids with a single (selective) plane illumination microscope. Cold Spring Harb Protoc 2014:106–113. doi:10.1101/pdb.prot080176

    PubMed  Google Scholar 

  82. Swoger J, Pampaloni F, Stelzer EHK (2014b) Light-sheet-based fluorescence microscopy for three-dimensional imaging of biological samples. Cold Spring Harb Protoc 2014:1–8. doi:10.1101/pdb.top080168

    PubMed  Google Scholar 

  83. Temerinac-Ott M, Ronneberger O, Ochs P, Driever W, Brox T, Burkhardt H (2012) Multiview deblurring for 3-D images from light-sheet-based fluorescence microscopy. IEEE Trans Image Process 21:1863–1873. doi:10.1109/TIP.2011.2181528

    PubMed  Google Scholar 

  84. Tomer R, Khairy K, Keller PJ (2011) Shedding light on the system: studying embryonic development with light sheet microscopy. Curr Opin Genet Dev 21:558–565. doi:10.1016/j.gde.2011.07.003

    CAS  PubMed  Google Scholar 

  85. Tomer R, Khairy K, Amat F, Keller PJ (2012) Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods 9:755–763. doi:10.1038/nmeth.2062

    PubMed  Google Scholar 

  86. Tomer R, Ye L, Hsueh B, Deisseroth K (2014) Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 9:1682–1697. doi:10.1038/nprot.2014.123

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Truong TV, Supatto W, Koos DS, Choi JM, Fraser SE (2011) Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat Methods 8:757–760. doi:10.1038/nmeth.1652

    CAS  PubMed  Google Scholar 

  88. Turaga D, Holy TE (2012) Organization of vomeronasal sensory coding revealed by fast volumetric calcium imaging. J Neurosci 32:1612–1621. doi:10.1523/JNEUROSCI. 5339-11.2012

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Vermeer JEM, von Wangenheim D, Barberon M, Lee Y, Stelzer EHK, Maizel A, Geldner N (2014) A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343:178–183. doi:10.1126/science.1245871

    CAS  PubMed  Google Scholar 

  90. Verveer PJ, Swoger J, Pampaloni F, Greger K, Marcello M, Stelzer EHK (2007) High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat Methods 4:311–313. doi:10.1038/NMETH1017

    CAS  PubMed  Google Scholar 

  91. Vettenburg T, Dalgarno HIC, Nylk J, Coll-Lladó C, Ferrier DEK, Čižmár T, Dholakia K (2014) Light-sheet microscopy using an Airy beam. Nat Methods 11:541–544. doi:10.1038/nmeth.2922

    CAS  PubMed  Google Scholar 

  92. Vladimirov N, Mu Y, Kawashima T, Bennett DV, Yang C-T, Looger LL, Ahrens MB (2014) Light-sheet functional imaging in fictively behaving zebrafish. Nat Methods 11:883-884. doi:10.1038/nmeth.3040

    CAS  PubMed  Google Scholar 

  93. Voie AH (2002) Imaging the intact guinea pig tympanic bulla by orthogonal-plane fluorescence optical sectioning microscopy. Hear Res 171:119–128. doi:10.1016/S0378-5955(02)00493-8

    PubMed  Google Scholar 

  94. Voie AH, Spelman FA (1995) Three-dimensional reconstruction of the cochlea from two-dimensional images of optical sections. Comput Med Imaging Graph 19:377–384. doi:10.1016/0895-6111(95)00034-8

    CAS  PubMed  Google Scholar 

  95. Voie AH, Burns DH, Spelman FA (1993) Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc 170:229–236. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8371260

    CAS  PubMed  Google Scholar 

  96. Weber M, Huisken J (2011) Light sheet microscopy for real-time developmental biology. Curr Opin Genet Dev 21:566–572. doi:10.1016/j.gde.2011.09.009

    CAS  PubMed  Google Scholar 

  97. Weber M, Huisken J (2012) Omnidirectional microscopy. Nat Methods 9:656–657. doi:10.1038/nmeth.2022

    CAS  PubMed  Google Scholar 

  98. Wohland T, Shi X, Sankaran J, Stelzer EHK (2010) Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 18:10627–10641. doi:10.1364/OE.18.010627

    CAS  PubMed  Google Scholar 

  99. Wu J, Li J, Chan RKY (2013) A light sheet based high throughput 3D-imaging flow cytometer for phytoplankton analysis. Opt Express 21:14474–14480. doi:10.1364/OE.21.014474

    CAS  PubMed  Google Scholar 

  100. Wu Y, Ghitani A, Christensen R, Santella A, Du Z, Rondeau G, Shroff H (2011) Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 108:17708–17713. doi:10.1073/pnas.1108494108

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Wu Y, Wawrzusin P, Senseney J, Fischer RS, Christensen R, Santella A, Shroff H (2013) Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol 31:1032–1038. doi:10.1038/nbt.2713

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen C-K, Lubeck E, Gradinaru V (2014) Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158:945–958. doi:10.1016/j.cell.2014.07.017

    CAS  PubMed  Google Scholar 

  103. Zhang P, Phipps ME, Goodwin PM, Werner JH (2014) Confocal line scanning of a Bessel beam for fast 3D imaging. Opt Lett 39:3682–3685. doi:10.1364/OL.39.003682

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Nariman Ansari for many discussions on 3D cell culture, Daniel von Wangenheim for the comments on LSFM applications in plant research and Christian Mattheyer for his contribution to optical clearing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesco Pampaloni.

Additional information

The research of the authors was funded by the Cluster of Excellence for Macromolecular Complexes (CEF-MC, EXC-115) granted to the Goethe Universität Frankfurt am Main by the Deutsche Forschungsgemeinschaft (DFG) and by the German Ministry for Education and Research (BMBF, Forschungsschwerpunkt Biophotonik IV, project ProMEBS) and additionally by the National Science Council (NSC100-2917-I-564-030) in Taiwan, R.O.C. and EMBO (ASTF 404–2012).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pampaloni, F., Chang, BJ. & Stelzer, E.H.K. Light sheet-based fluorescence microscopy (LSFM) for the quantitative imaging of cells and tissues. Cell Tissue Res 360, 129–141 (2015). https://doi.org/10.1007/s00441-015-2144-5

Download citation

Keywords

  • Light sheet-based fluorescence microscopy (LSFM)
  • Digitally scanned light sheet-based microscopy
  • Single/selective-plane illumination microscopy
  • Three-dimensional cell cultures
  • Cellular spheroids
  • High-throughput LSFM