Skip to main content

Advertisement

Log in

Microtubule-associated protein tau (Mapt) is expressed in terminally differentiated odontoblasts and severely down-regulated in morphologically disturbed odontoblasts of Runx2 transgenic mice

  • Short Communication
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Runx2 is an essential transcription factor for osteoblast and odontoblast differentiation and the terminal differentiation of chondrocytes. We have previously shown that the terminal differentiation of odontoblasts is inhibited in Runx2 transgenic {Tg(Col1a1-Runx2)} mice under the control of the 2.3-kb Col1a1 promoter, which directs the transgene expression to osteoblasts and odontoblasts. Odontoblasts show severe reductions in Dspp and nestin expression and lose their characteristic polarized morphology, including a long process extending to dentin, in Tg(Col1a1-Runx2) mice. We study the molecular mechanism of odontoblast morphogenesis by comparing gene expression in the molars of wild-type and Tg(Col1a1-Runx2) mice, focusing on cytoskeleton-related genes. Using microarray, we found that the gene expression of microtubule-associated protein tau (Mapt), a neuronal phosphoprotein with important roles in neuronal biology and microtubule dynamics and assembly, was high in wild-type molars but severely reduced in Tg(Col1a1-Runx2) molars. Immunohistochemical analysis revealed that Mapt was specifically expressed in terminally differentiated odontoblasts including their processes in wild-type molars but its expression was barely detectable in Tg(Col1a1-Runx2) molars. Double-staining of Mapt and Runx2 showed their reciprocal expression in odontoblasts. Mapt and tubulin co-localized in odontoblasts in wild-type molars. Immunoelectron microscopic analysis demonstrated Mapt lying around α-tubulin-positive filamentous structures in odontoblast processes. Thus, Mapt is a useful marker for terminally differentiated odontoblasts and might play an important role in odontoblast morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aberg T, Wang XP, Kim JH, Yamashiro T, Bei M, Rice R, Ryoo HM, Thesleff I (2004) Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol 270:76–93. doi:10.1016/j.ydbio.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  • About I, Laurent-Maquin D, Lendahl U, Mitsiadis TA (2000) Nestin expression in embryonic and adult human teeth under normal and pathological conditions. Am J Pathol 157:287–295. doi:10.1016/S0002-9440(10)64539-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Bassam J, Ozer RS, Safer D, Halpain S, Milligan RA (2002) MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J Cell Biol 157:1187–1196. doi:10.1083/jcb.200201048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arana-Chavez VE, Massa LF (2004) Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol 36:1367–1373. doi:10.1016/j.biocel.2004.01.006

    Article  CAS  PubMed  Google Scholar 

  • Baba TT, Ohara-Nemoto Y, Miyazaki T, Nemoto TK (2013) Involvement of geranylgeranylation of Rho and Rac GTPases in adipogenic and RANKL expression, which was inhibited by simvastatin. Cell Biochem Funct 31:652–659. doi:10.1002/cbf.2951

    Article  CAS  PubMed  Google Scholar 

  • Begue-Kirn C, Krebsbach PH, Bartlett JD, Butler WT (1998) Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sci 106:963–970

    Article  CAS  PubMed  Google Scholar 

  • Black MM, Slaughter T, Moshiach S, Obrocka M, Fischer I (1996) Tau is enriched on dynamic microtubules in the distal region of growing axons. J Neurosci 16:3601–3619

    CAS  PubMed  Google Scholar 

  • Bleicher F (2014) Odontoblast physiology. Exp Cell Res 325:65–71. doi:10.1016/j.yexcr.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  • Bleicher F, Couble ML, Buchaille R, Farges JC, Magloire H (2001) New genes involved in odontoblast differentiation. Adv Dent Res 15:30–33

    Article  CAS  PubMed  Google Scholar 

  • Bronckers AL, Engelse MA, Cavender A, Gaikwad J, D’Souza RN (2001) Cell-specific patterns of Cbfa1 mRNA and protein expression in postnatal murine dental tissues. Mech Dev 101:255–258

    Article  CAS  PubMed  Google Scholar 

  • Buchaille R, Couble ML, Magloire H, Bleicher F (2000) A substractive PCR-based cDNA library from human odontoblast cells: identification of novel genes expressed in tooth forming cells. Matrix Biol 19:421–430

    Article  CAS  PubMed  Google Scholar 

  • Caceres A, Kosik KS (1990) Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343:461–463. doi:10.1038/343461a0

    Article  CAS  PubMed  Google Scholar 

  • Carda C, Peydro A (2006) Ultrastructural patterns of human dentinal tubules, odontoblasts processes and nerve fibres. Tissue Cell 38:141–150. doi:10.1016/j.tice.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Kanai Y, Cowan NJ, Hirokawa N (1992) Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360:674–677. doi:10.1038/360674a0

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Rani S, Wu Y, Unterbrink A, Gu TT, Gluhak-Heinrich J, Chuang HH, Macdougall M (2005) Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Biol Chem 280:29717–29727. doi:10.1074/jbc.M502929200

    Article  CAS  PubMed  Google Scholar 

  • D’Souza RN, Aberg T, Gaikwad J, Cavender A, Owen M, Karsenty G, Thesleff I (1999) Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development 126:2911–2920

    PubMed  Google Scholar 

  • Dehmelt L, Halpain S (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6:204. doi:10.1186/gb-2004-6-1-204

    Article  PubMed Central  PubMed  Google Scholar 

  • DiTella MC, Feiguin F, Carri N, Kosik KS, Caceres A (1996) MAP-1B/TAU functional redundancy during laminin-enhanced axonal growth. J Cell Sci 109:467–477

    CAS  PubMed  Google Scholar 

  • Drewes G, Ebneth A, Mandelkow EM (1998) MAPs, MARKs and microtubule dynamics. Trends Biochem Sci 23:307–311

    Article  CAS  PubMed  Google Scholar 

  • Feinstein SC, Wilson L (2005) Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta 1739:268–279. doi:10.1016/j.bbadis.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  • Garant PR (1972) The organization of microtubules within rat odontoblast processes revealed by perfusion fixation with glutaraldehyde. Arch Oral Biol 17:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Goldberg M, Smith AJ (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15:13–27

    Article  PubMed  Google Scholar 

  • Hall GF (2012) The biology and pathobiology of tau protein. In: Kavallaris M (ed) Cytoskeleton and human disease. Humana/Springer, New York, pp 285–313

    Chapter  Google Scholar 

  • Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, Sato-Yoshitake R, Takei Y, Noda T, Hirokawa N (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369:488–491. doi:10.1038/369488a0

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Shiomura Y, Okabe S (1988) Tau proteins: the molecular structure and mode of binding on microtubules. J Cell Biol 107:1449–1459

    Article  CAS  PubMed  Google Scholar 

  • Huang W da, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. doi:10.1038/nprot.2008.211

  • Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad E, Gong CX, Khatoon S, Li B, Liu F, Rahman A, Tanimukai H, Grundke-Iqbal I (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739:198–210. doi:10.1016/j.bbadis.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  • Kawagishi E, Nakakura-Ohshima K, Nomura S, Ohshima H (2006) Pulpal responses to cavity preparation in aged rat molars. Cell Tissue Res 326:111–122. doi:10.1007/s00441-006-0230-4

    Article  CAS  PubMed  Google Scholar 

  • Kempf M, Clement A, Faissner A, Lee G, Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 16:5583–5592

    CAS  PubMed  Google Scholar 

  • Knops J, Kosik KS, Lee G, Pardee JD, Cohen-Gould L, McConlogue L (1991) Overexpression of tau in a nonneuronal cell induces long cellular processes. J Cell Biol 114:725–733

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Mundel P (1998) A role of microtubules during the formation of cell processes in neuronal and non-neuronal cells. Cell Tissue Res 291:163–174

    Article  CAS  PubMed  Google Scholar 

  • Komori T (2010) Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res 339:189–195. doi:10.1007/s00441-009-0832-8

    Article  CAS  PubMed  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Go EJ, Jung HS, Kim E, Jung IY, Lee SJ (2012) Immunohistochemical analysis of pulpal regeneration by nestin expression in replanted teeth. Int Endod J 45:652–659. doi:10.1111/j.1365-2591.2012.02024.x

    Article  CAS  PubMed  Google Scholar 

  • Li S, Kong H, Yao N, Yu Q, Wang P, Lin Y, Wang J, Kuang R, Zhao X, Xu J, Zhu Q, Ni L (2011) The role of runt-related transcription factor 2 (Runx2) in the late stage of odontoblast differentiation and dentin formation. Biochem Biophys Res Commun 410:698–704. doi:10.1016/j.bbrc.2011.06.065

    Article  CAS  PubMed  Google Scholar 

  • Linde A, Goldberg M (1993) Dentinogenesis. Crit Rev Oral Biol Med 4:679–728

    CAS  PubMed  Google Scholar 

  • Liu W, Toyosawa S, Furuichi T, Kanatani N, Yoshida C, Liu Y, Himeno M, Narai S, Yamaguchi A, Komori T (2001) Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol 155:157–166. doi:10.1083/jcb.200105052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magloire H, Couble ML, Thivichon-Prince B, Maurin JC, Bleicher F (2009) Odontoblast: a mechano-sensory cell. J Exp Zool B Mol Dev Evol 312B:416–424. doi:10.1002/jez.b.21264

    Article  CAS  PubMed  Google Scholar 

  • Maurin JC, Couble ML, Staquet MJ, Carrouel F, About I, Avila J, Magloire H, Bleicher F (2009) Microtubule-associated protein 1b, a neuronal marker involved in odontoblast differentiation. J Endod 35:992–996. doi:10.1016/j.joen.2009.04.009

    Article  PubMed  Google Scholar 

  • Michalczyk K, Ziman M (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol 20:665–671

    CAS  PubMed  Google Scholar 

  • Miyazaki T, Kanatani N, Rokutanda S, Yoshida C, Toyosawa S, Nakamura R, Takada S, Komori T (2008) Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Arch Histol Cytol 71:131–146

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa S, Kitamura H (1987) Microtubules, intermediate filaments, and actin filaments in the odontoblast of rat incisor. Anat Rec 219:144–151. doi:10.1002/ar.1092190206

    Article  CAS  PubMed  Google Scholar 

  • Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Article  CAS  PubMed  Google Scholar 

  • Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501. doi:10.1038/ng1032

    Article  CAS  PubMed  Google Scholar 

  • Quispe-Salcedo A, Ida-Yonemochi H, Nakatomi M, Ohshima H (2012) Expression patterns of nestin and dentin sialoprotein during dentinogenesis in mice. Biomed Res 33:119–132

    Article  CAS  PubMed  Google Scholar 

  • Ruch JV, Lesot H, Begue-Kirn C (1995) Odontoblast differentiation. Int J Dev Biol 39:51–68

    CAS  PubMed  Google Scholar 

  • Sasaki T, Garant PR (1996) Structure and organization of odontoblasts. Anat Rec 245:235–249. doi:10.1002/(SICI)1097-0185(199606)245:2<235::AID-AR10>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  • Sigal MJ, Aubin JE, Ten Cate AR (1985) An immunocytochemical study of the human odontoblast process using antibodies against tubulin, actin, and vimentin. J Dent Res 64:1348–1355

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Teng J, Harada A, Hirokawa N (2000) Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol 150:989–1000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tint I, Slaughter T, Fischer I, Black MM (1998) Acute inactivation of tau has no effect on dynamics of microtubules in growing axons of cultured sympathetic neurons. J Neurosci 18:8660–8673

    CAS  PubMed  Google Scholar 

  • Yamashiro T, Aberg T, Levanon D, Groner Y, Thesleff I (2002) Expression of Runx1, -2 and -3 during tooth, palate and craniofacial bone development. Mech Dev 119 (Suppl 1):S107–S110

    Article  PubMed  Google Scholar 

  • Yan Y, Yang J, Bian W, Jing N (2001) Mouse nestin protein localizes in growth cones of P19 neurons and cerebellar granule cells. Neurosci Lett 302:89–92

    Article  CAS  PubMed  Google Scholar 

  • Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K, Yamana K, Zanma A, Takada K, Ito Y, Komori T (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 18:952–963. doi:10.1101/gad.1174704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Y. Matsuo for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihisa Komori.

Additional information

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (#24592771 and #26221310).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

(PDF 71 kb)

Supplemental Table 2

(PDF 92 kb)

Supplemental Table 3

(PDF 85 kb)

Supplementary Figure 1

Hematoxylin and eosin (H-E) staining of a section of an extracted lower first molar at 2 weeks of age. Intercuspal and root regions indicated by boxes in a are magnified in b, c, respectively. No cellular degradation of the extracted teeth including periodontal tissues and reduced enamel epithelium (Re) is seen (D dentin, Dp dental pulp, Ob odontoblasts, Pl periodontal ligament). Bars 500 μm (a), 100 μm (b, c). (PDF 718 kb)

Supplementary Figure 2

Immunohistochemical analysis of Mapt. Localization of Mapt in frontal sections of the craniofacial region of wild-type (wt; a, c, d) and Tg(Col1a1-Runx2) (tg; b, e, f) mice at 1 day of age. Boxed regions in a, b are shown at higher magnification in c–f, respectively. Mapt expression (brown) is found in nervous tissues in both mice types, whereas it is located in odontoblasts in tooth germs of wild-type mice but not of Tg(Col1a1-Runx2) mice (arrows in c, e). Bars 1 mm (a, b), 100 μm (c–f). (PDF 754 kb)

Supplementary Figure 3

Immunohistochemical localization of DSP. Localization of DSP protein in the first molars in wild-type (wt, a, b, e, f) and Tg(Col1a1-Runx2) (tg) (c, d, g, h) mice at 1 day (a–d) and 9 days (e–h) of age. Boxed regions in a, c, e, g are shown at higher magnification in b, d, f, h, respectively. DSP expression is exclusively and strongly detected in differentiated odontoblasts, dentinal tubules and dentin matrices in wild-type mice, whereas it is faintly detected in odontoblasts in Tg(Col1a1-Runx2) mice (Ob odontoblasts). Bars 200 μm (a, c), 500 μm (e, g), 50 μm (b, d), 20 μm (f, h). (PDF 733 kb)

Supplementary Figure 4

Immunohistochemical localization of tubulin α1A. Localization of tubulin α1A protein in the first molars in wild-type (wt, a, b, e, f) and Tg(Col1a1-Runx2) (tg, c, d, g, h) mice at 1 day (a–d) and 9 days (e–h) of age. Boxed regions in a, c, e, g are shown at higher magnification in b, d, f, h, respectively. Tubulin α1A protein is detected in odontoblasts and in various other cells in both wild-type and Tg(Col1a1-Runx2) mice. The intensity of tubulin α1A staining was similar in odontoblasts of wild-type and Tg(Col1a1-Runx2) molars at 1 day of age, whereas it was reduced in odontoblasts of Tg(Col1a1-Runx2) molars at 9 days of age mainly because of the lack of the tall columnar cell body and polarization. Bars 200 μm (a, c), 500 μm (e, g), 50 μm (b, d), 20 μm (f, h). (PDF 750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, T., Baba, T.T., Mori, M. et al. Microtubule-associated protein tau (Mapt) is expressed in terminally differentiated odontoblasts and severely down-regulated in morphologically disturbed odontoblasts of Runx2 transgenic mice. Cell Tissue Res 361, 457–466 (2015). https://doi.org/10.1007/s00441-015-2135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2135-6

Keywords

Navigation