Skip to main content

Advertisement

Log in

PTB-associated splicing factor inhibits IGF-1-induced VEGF upregulation in a mouse model of oxygen-induced retinopathy

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Pathological retinal neovascularization, including retinopathy of prematurity and age-related macular degeneration, is the most common cause of blindness worldwide. Insulin-like growth factor-1 (IGF-1) has a direct mitogenic effect on endothelial cells, which is the basis of angiogenesis. Vascular endothelial growth factor (VEGF) activation in response to IGF-1 is well documented; however, the molecular mechanisms responsible for the termination of IGF-1 signaling are still not completely elucidated. Here, we show that the polypyrimidine tract-binding protein-associated splicing factor (PSF) is a potential negative regulator of VEGF expression induced by IGF stimulation. Functional analysis demonstrated that ectopic expression of PSF inhibits IGF-1-stimulated transcriptional activation and mRNA expression of the VEGF gene, whereas knockdown of PSF increased IGF-1-stimulated responses. PSF recruited Hakai to the VEGF transcription complex, resulting in inhibition of IGF-1-mediated transcription. Transfection with Hakai siRNA reversed the PSF-mediated transcriptional repression of VEGF gene transcription. In summary, these results show that PSF can repress the transcriptional activation of VEGF stimulated by IGF-1 via recruitment of the Hakai complex and delineate a novel regulatory mechanism of IGF-1/VEGF signaling that may have implications in the pathogenesis of neovascularization in ocular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aiello LP (2005) Angiogenic pathways in diabetic retinopathy. N Engl J Med 353:839–841

    Article  CAS  PubMed  Google Scholar 

  • Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487

    Article  CAS  PubMed  Google Scholar 

  • Beppu K, Nakamura K, Linehan WM, Rapisarda A, Thiele CJ (2005) Topotecan blocks hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression induced by insulin-like growth factor-I in neuroblastoma cells. Cancer Res 65:4775–4781

    Article  CAS  PubMed  Google Scholar 

  • Bernatchez PN, Soker S, Sirois MG (1999) Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent. J Biol Chem 274:31047–31054

    Article  CAS  PubMed  Google Scholar 

  • Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J, Noblin DJ, Jorgensen WL, Ciulli A, Crews CM (2012) Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J Am Chem Soc 134:4465–4468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll V, Ashcroft M (2006) Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res 66:6264–6270

    Article  CAS  PubMed  Google Scholar 

  • Deacon K, Onion D, Kumari R, Watson SA, Knox AJ (2012) Elevated SP-1 transcription factor expression and activity drives basal and hypoxia-induced vascular endothelial growth factor (VEGF) expression in non-small cell lung cancer. J Biol Chem 287:39967–39981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Denner L, Bodenburg YH, Jiang J, Pages G, Urban RJ (2010) Insulin-like growth factor-I activates extracellularly regulated kinase to regulate the p450 side-chain cleavage insulin-like response element in granulosa cells. Endocrinology 151:2819–2825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dilly AK, Rajala RV (2008) Insulin growth factor 1 receptor/PI3K/AKT survival pathway in outer segment membranes of rod photoreceptors. Invest Ophthalmol Vis Sci 49:4765–4773

    Article  PubMed Central  PubMed  Google Scholar 

  • Dong X, Shylnova O, Challis JR, Lye SJ (2005) Identification and characterization of the protein-associated splicing factor as a negative co-regulator of the progesterone receptor. J Biol Chem 280:13329–13340

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Sweet J, Challis JR, Brown T, Lye SJ (2007) Transcriptional activity of androgen receptor is modulated by two RNA splicing factors, PSF and p54nrb. Mol Cell Biol 27:4863–4875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dong L, Zhang X, Fu X, Zhang X, Gao X, Zhu M, Wang X, Yang Z, Jensen ON, Saarikettu J, Yao Z, Silvennoinen O, Yang J (2011) PTB-associated splicing factor (PSF) functions as a repressor of STAT6-mediated Ig epsilon gene transcription by recruitment of HDAC1. J Biol Chem 286:3451–3459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Figueroa A, Fujita Y, Gorospe M (2009a) Hacking RNA: Hakai promotes tumorigenesis by enhancing the RNA-binding function of PSF. Cell Cycle 8:3648–3651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Figueroa A, Kotani H, Toda Y, Mazan-Mamczarz K, Mueller EC, Otto A, Disch L, Norman M, Ramdasi RM, Keshtgar M, Gorospe M, Fujita Y (2009b) Novel roles of hakai in cell proliferation and oncogenesis. Mol Biol Cell 20:3533–3542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, Sommer T, Birchmeier W (2002) Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4:222–231

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom A, Perruzzi C, Ju M, Engstrom E, Hard AL, Liu JL, Albertsson-Wikland K, Carlsson B, Niklasson A, Sjodell L, LeRoith D, Senger DR, Smith LE (2001) Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci U S A 98:5804–5808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286:309–312

    Article  CAS  PubMed  Google Scholar 

  • Lambooij AC, van Wely KH, Lindenbergh-Kortleve DJ, Kuijpers RW, Kliffen M, Mooy CM (2003) Insulin-like growth factor-I and its receptor in neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 44:2192–2198

    Article  PubMed  Google Scholar 

  • Lukong KE, Huot ME, Richard S (2009) BRK phosphorylates PSF promoting its cytoplasmic localization and cell cycle arrest. Cell Signal 21:1415–1422

    Article  CAS  PubMed  Google Scholar 

  • Maniatis T (1999) A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev 13:505–510

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto K, Sakurai H, Sugiura T (2008) Proteomic identification of a PSF/p54nrb heterodimer as RNF43 oncoprotein-interacting proteins. Proteomics 8:2907–2910

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Tsuruma K, Shimazawa M, Hara H (2012) Candesartan, an angiotensin II type 1 receptor antagonist, inhibits pathological retinal neovascularization by downregulating VEGF receptor-2 expression. Eur J Pharmacol 685:8–14

    Article  CAS  PubMed  Google Scholar 

  • Patton JG, Porro EB, Galceran J, Tempst P, Nadal-Ginard B (1993) Cloning and characterization of PSF, a novel pre-mRNA splicing factor. Genes Dev 7:393–406

    Article  CAS  PubMed  Google Scholar 

  • Perez-Moreno M, Jamora C, Fuchs E (2003) Sticky business: orchestrating cellular signals at adherens junctions. Cell 112:535–548

    Article  CAS  PubMed  Google Scholar 

  • Punglia RS, Lu M, Hsu J, Kuroki M, Tolentino MJ, Keough K, Levy AP, Levy NS, Goldberg MA, D’Amato RJ, Adamis AP (1997) Regulation of vascular endothelial growth factor expression by insulin-like growth factor I. Diabetes 46:1619–1626

    Article  CAS  PubMed  Google Scholar 

  • Schmid E, Nogalo M, Bechrakis NE, Fischer-Colbrie R, Tasan R, Sperk G, Theurl M, Beer AG, Kirchmair R, Herzog H, Troger J (2012) Secretoneurin, substance P and neuropeptide Y in the oxygen-induced retinopathy in C57Bl/6 N mice. Peptides 37:252–257

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Spoerri PE, Caballero S, Wilson SH, Shaw LC, Grant MB (2003) Expression of IGFBP-3 by human retinal endothelial cell cultures: IGFBP-3 involvement in growth inhibition and apoptosis. Invest Ophthalmol Vis Sci 44:365–369

    Article  PubMed  Google Scholar 

  • Su T, Gillies MC (1992) A simple method for the in vitro culture of human retinal capillary endothelial cells. Invest Ophthalmol Vis Sci 33:2809–2813

    CAS  PubMed  Google Scholar 

  • Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK (2000) Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha hypoxia response element VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res 60:6248–6252

    CAS  PubMed  Google Scholar 

  • Urban RJ, Bodenburg Y (2002) PTB-associated splicing factor regulates growth factor-stimulated gene expression in mammalian cells. Am J Physiol Endocrinol Metab 283:E794–E798

    Article  CAS  PubMed  Google Scholar 

  • Urban RJ, Bodenburg Y, Kurosky A, Wood TG, Gasic S (2000) Polypyrimidine tract-binding protein-associated splicing factor is a negative regulator of transcriptional activity of the porcine p450scc insulin-like growth factor response eleiniment. Mol Endocrinol 14:774–782

    Article  CAS  PubMed  Google Scholar 

  • Urban RJ, Bodenburg YH, Wood TG (2002) NH2 terminus of PTB-associated splicing factor binds to the porcine P450scc IGF-I response element. Am J Physiol Endocrinol Metab 283:E423–E427

    Article  CAS  PubMed  Google Scholar 

  • Urban RJ, Bodenburg YH, Jiang J, Denner L, Chedrese J (2004) Protein kinase Ciota enhances the transcriptional activity of the porcine P-450 side-chain cleavage insulin-like response element. Am J Physiol Endocrinol Metab 286:E975–E979

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Rendahl KG, Manning WC, Quiroz D, Coyne M, Miller SS (2003) AAV-mediated expression of vascular endothelial growth factor induces choroidal neovascularization in rat. Invest Ophthalmol Vis Sci 44:781–790

    Article  PubMed  Google Scholar 

  • Wang FE, Zhang C, Maminishkis A, Dong L, Zhi C, Li R, Zhao J, Majerciak V, Gaur AB, Chen S, Miller SS (2010) MicroRNA-204/211 alters epithelial physiology. FASEB J 24:1552–1571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wheelock MJ, Johnson KR (2003) Cadherin-mediated cellular signaling. Curr Opin Cell Biol 15:509–514

    Article  CAS  PubMed  Google Scholar 

  • Xia XB, Xiong SQ, Xu HZ, Jiang J, Li Y (2008) Suppression of retinal neovascularization by shRNA targeting HIF-1alpha. Curr Eye Res 33:892–902

    Article  PubMed  Google Scholar 

  • Zhang X, Gaspard JP, Chung DC (2001) Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 61:6050–6054

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (NSFC:31100991, 81400425), Tianjin Municipal Science and Technology Commission Grants (13JCYBJC23300,11JCYBJC09900), the joint project by Doctoral Fund of Ministry of Education doctoral subject (20111202110009), and Tianjin Medical University Eye Hospital Science Grant of PhD (20120403).

Conflict of interest

The authors have no conflicts of interest of a financial nature or otherwise.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijie Dong, Fei Wang or Xiaorong Li.

Additional information

Lijie Dong, Hong Nian and Yan Shao contributed equally to this paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Nian, H., Shao, Y. et al. PTB-associated splicing factor inhibits IGF-1-induced VEGF upregulation in a mouse model of oxygen-induced retinopathy. Cell Tissue Res 360, 233–243 (2015). https://doi.org/10.1007/s00441-014-2104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2104-5

Keywords

Navigation