Advertisement

Cell and Tissue Research

, Volume 360, Issue 1, pp 87–107 | Cite as

Autoradiography techniques and quantification of drug distribution

  • Eric G. SolonEmail author
Review

Abstract

The use of radiolabeled drug compounds offers the most efficient way to quantify the amount of drug and/or drug-derived metabolites in biological samples. Autoradiography is a technique using X- ray film, phosphor imaging plates, beta imaging systems, or photo-nuclear emulsion to visualize molecules or fragments of molecules that have been radioactively labeled, and it has been used to quantify and localize drugs in tissues and cells for decades. Quantitative whole-body autoradiography or autoradioluminography (QWBA) using phosphor imaging technology has revolutionized the conduct of drug distribution studies by providing high resolution images of the spatial distribution and matching tissue concentrations of drug-related radioactivity throughout the body of laboratory animals. This provides tissue-specific pharmacokinetic (PK) compartmental analysis which has been useful in toxicology, pharmacology, and drug disposition/patterns, and to predict human exposure to drugs and metabolites, and also radioactivity, when a human radiolabeled drug study is necessary. Microautoradiography (MARG) is another autoradiographic technique that qualitatively resolves the localization of radiolabeled compounds to the cellular level in a histological preparation. There are several examples in the literature of investigators attempting to obtain drug concentration data from MARG samples; however, there are technical issues which make that problematic. These issues will be discussed. This review will present a synopsis of both techniques and examples of how they have been used for drug research in recent years.

Keywords

Quantitative autoradiography Microautoradiography Imaging ADME Drug concentration 

References

  1. Appleton TC (1964) Autoradiography of soluble labeled compounds. J R Microsc Soc 83:277–281CrossRefPubMedGoogle Scholar
  2. Baker JRJ (1989) Autoradiography: A Comprehensive Review. Royal Microscopical Society, Microscopy Handbooks 18. Oxford University Press, p 30–32Google Scholar
  3. Blackett NM, Parry DM (1973) A new methodfor analyzing electron microscope autoradiographs using hypothetical grain distributions. J Cell Biol 57:9–15CrossRefPubMedCentralPubMedGoogle Scholar
  4. Brown LA (2013) Pharmacology/Toxicology Primary Discipline Review; Subject: STN 125466/0 - Novo Nordisk;s Original Biological License Application (BLA) NovoEight®, Antihemophilic Factor (Recombinant) Plasma/albumin Free beta (β)-domain deleted (BDD); FDA File (original BLA STN 125466/0Google Scholar
  5. Charpak G, Imrie D, Jeanjean J, Miné P, Nguyen H, Scigocki D, Tavernier SPK, Wells K (1989) A new approach to positron emission tomography. Eur J Nucl Med 15:690–693CrossRefPubMedGoogle Scholar
  6. Christensen J, Litherland K, Faller T, van de Kerkhof NF, Hunziker J, Krauser J, Swart P (2013) Metabolism studies of unformulated internally [3H]-labeled short interfering RNAs in mice. Drug Metab Dispos 41(6):1211–1219CrossRefPubMedGoogle Scholar
  7. Ciprotti M, Chong G, Gan HK, Chan A, Murone C, MacGregor D, Lee F-T, Johns TG, Heath JK, Ernst M, Burgess AW, Scott AM (2014) Quantitative intratumoural microdistribution and kinetics of 131I-huA33 antibody in patients with colorectal carcinoma. EJNMMI Res 4:22CrossRefPubMedCentralPubMedGoogle Scholar
  8. Coe RAJ (1982) An evaluation of X-ray films suitable for autoradiographs using ß14C radiation. Int J Appl Radiat Isot 36:93–96Google Scholar
  9. Cross SAM, Groves AD, Hesselbo T (1974) A quantitative method for measuring radioactivity in tissues sectioned for whole body radiography. Int J Appl Radiat Isot 25:381–386CrossRefPubMedGoogle Scholar
  10. Dain JD, Collins JM, Robinson WT (1994) A regulatory and industrial perspective of the use of carbon-14 and tritium isotopes in human ADME studies. Pharm Res 11(6):925–928CrossRefPubMedGoogle Scholar
  11. Davenport L (2013) Teriflunomide: no effects on sperm. Poster at 29th Congress of European Committee for Treatment and Research in Multiple Sclerosis October 2–3, 2013, Copenhagen, DenmarkGoogle Scholar
  12. Downs AM, Williams MA (1984) An improved approach to the analysis of autoradiographs containing isolated sources of simple shape: method, theoretical basis and reference data. J Microsc 114:143–156CrossRefGoogle Scholar
  13. Flitney FW (1969) Tritium-labelled Araldite as an internal standard for quantitative autoradiography using the electron microscope. J Microsc 90(2):151–156CrossRefPubMedGoogle Scholar
  14. Franklin ER (1985) The use of measurements of radiographic film response of X-ray film in quantitative and semi-quantitative autoradiography. Int J Appl Radiat Isot 36:193–196CrossRefPubMedGoogle Scholar
  15. Gross S, Piwnica-Worms D (2006) Molecular imaging strategies for drug discovery and development. Curr Opinions Chem Biol 10(4):33442Google Scholar
  16. Haglund J, Borg N (2013) ADME characterization in rtas revealed immediate secretion of AZD7903 into the stomach after IV dosing. Xenobiotica 43(9):823–835CrossRefPubMedGoogle Scholar
  17. Hall H, Velikyan I, Blom E, Ulin J, Monazzam A, Påhlman L, Micke P, Wanders A, McBride W, Goldenberg DM, Långström B (2012) In vitro autoradiography of carcinoembryonic antigen in tissue from patients with colorectal cancer using multifunctional antibody TF2 and 67/68Ga-labeled haptens by pretargeting. Am J Nucl Med Mol Imaging 2(2):141–150PubMedCentralPubMedGoogle Scholar
  18. Héroult M, Steinke W, Frisk A-L, Borkowski S, Meyer K, Petrul H, Heisler I, Quanz M, Neuhaus, Buchmann B, Miller T, Bauser M, Hägenbarth A, Brands M, Ziegelbauer K (2014) Effects of selective and broad glucose transporter inhibition on glucose distribution in tumor-bearing mice. Poster at Annual Meeting of the American Association for Cancer Research, San DiegoGoogle Scholar
  19. Herzog E, Harris S, McEwen A, Henson C, Pragst I, Dickneite SS, Zollner S (2014) Recombinant fusion protein linking factor VIIa with albumin (rVII-FP): tissue distribution in rats. Thromb Res 134(2):495–502. doi: 10.1016/j.thrombres.2014.05.031 CrossRefPubMedGoogle Scholar
  20. Hesk D, Koharski D, Saluja S (1997) In: Synthesis and applications of isotopically labeled compounds. Wiley, New YorkGoogle Scholar
  21. Jeavons AP, Hood K, Herlin O (1983) The high density avalanche chamber for positron emission tomography. IEEE Transcripts Nucl Sci 30:640–645CrossRefGoogle Scholar
  22. Kim H, Prelusky D, Wang L, Hesk D, Palamanda J, Nomeir A (2002) The importance of radiochemical analysis of biological fluids before and after lyophilization from animals dosed with [3H]-labeled compounds in drug discovery. Am Pharm Rev 7:44–48Google Scholar
  23. Kolbe H, Dietzel G (2000) Technical validation of radioluminography systems. J Regul Toxicol Pharmacol 31(2):S5–S14CrossRefGoogle Scholar
  24. Kolkhof P, Delbeck M, Kretschmer A, Steinke W, Hartmann E, Bärfacker L, Eitner F, Albrecht-Küpper B, Schäfer S (2014) Finerenone, a novel selective nonsteriodal mineralocortoid receptor antagonist protects from rat cardiorenal injury. J Cardiovasc Pharmacol 64(1):69–78CrossRefPubMedGoogle Scholar
  25. Kravitz E, Gaisler-Salomon I, Biegon A (2013) Hippocampal glutamate NMDA receptor loss tracks progression in Alzheimer’s disease: quantitative autoradiography in postmortem human brain. PLoS ONE 8(11):e81244CrossRefPubMedCentralPubMedGoogle Scholar
  26. Lacassagne A, Lattes J (1924) R’éparitiondu polonium (injecté sous la peau) dans l’organisme de rats porteurs de griffes cancereuses. C R Séance Soc Biol 90:352–353Google Scholar
  27. LeBlanc B, Jezequel S, Davies T, Hanton G, Taradach C (1998) Binding of drugs to eye melanin is not predictive of ocular toxicity. Regul Toxicol Pharmacol 28:124–132CrossRefPubMedGoogle Scholar
  28. Liquier-Milward J (1956) Electron microscopy and radioautography as coupled techniques in tracer experiments. Nature 177:619CrossRefPubMedGoogle Scholar
  29. Longshaw S, Fowler JSL (1978) A poly (methy l4C) methacrylate source for use in whole-body autoradiography and beta-radiography. Xenobiotica 8:289–295CrossRefPubMedGoogle Scholar
  30. Luckey G (1975) US Patent 3:859,527Google Scholar
  31. Märs U, d’Argy R, Hallbeck K, Miller-Larsson A, Edsbäcker S (2013) Tissue accumulation kinetics of ciclesonide-active metabolite and budesonide in mice. Basic Clin Pharmacol Toxicol 112(6):401–411CrossRefPubMedGoogle Scholar
  32. Metaxas A, Willems R, Kooijman EJM, Renjaän VA, Klein PJ, Windhorst AD, Ver Donck L, Leysen JE, van Berckel BNM (2014) Subchronic treatment with phencyclidine in adolescence leads to impaired exploratory behavior in adult rats without altering social interaction or N-Methyl-D-aspartate receptor binding levels. J Neurosci Res. doi: 10.1002/jnr.23433 PubMedGoogle Scholar
  33. Mizoguchi K, Kanno H, Ikarashi Y, Kase Y (2014) Specific binding and characteristics of 18b-Glycyrrhetinic. Acid in rat brain. PLoS ONE 9(4):e95760CrossRefPubMedCentralPubMedGoogle Scholar
  34. Morris ED, Yoder KK, Wang C, Normandin MD, Zheng QH, Mock B, Muzic RF Jr, Froehlich JC (2005) ntPET: a new application of PET imaging for characterizing the kinetics of endogenous neurotransmitter release. Mol Imaging 4(4):473–489PubMedGoogle Scholar
  35. Motie M, Schaul KW, Potempa LA (1998) Biodistribution and clearance of 125I-labeled C-reactive protein and 125I-labeled modified C-reactive protein in CD-1 mice. Drug Metab Dispos 26(10):977–981PubMedGoogle Scholar
  36. Nakatomi Y, Tsuji M, Nakashima T, Gokudan S, Miyazaki H, Tomokiyo K, Ogata Y, Harano S, Matsui H, Shigaki T, Nakamura T, Mogi M (2012) Pharmacokinetics, distribution, and excretion of 125I-labeled human plasma-derived-FVIIa and -FX with MC710 (FVIIa/FX mixture) in rats. Thromb Res 129:62–67CrossRefPubMedGoogle Scholar
  37. Paudyal R, Ewing JR, Nagaraja TN, Bagher-Ebadian H, Knight RA, Panda S, Lu M, Ledbetter K, Fenstermacher JD (2011) The concerdance of MRI and quantitative autoradiography estimates of the trasnvascular transfer rate constant of albumin in a rat brain tumor model. Magn Reson Med 66(5):1422–1431CrossRefPubMedCentralPubMedGoogle Scholar
  38. Ramsden D, Tweedie DJ, St George R, Chen L-Z, Li Y (2013) Generating an in-vitro-in vivo correlation for metabolism and liver enrishment of a hepatitis C Virus drug, Faldaprevir, using a rat hepatocyte mode (HepatoPac). Drug Metab Dispos 42(3):407–414CrossRefPubMedGoogle Scholar
  39. Rind HB, Butowt R, von Bartheld CS (2005) Synpatic targeting of retrogradely transported trophic factors in motorneurons: comaprison of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and cardiotrohon-1 with tetanus toxin. J Neurosci 25(3):539–549CrossRefPubMedGoogle Scholar
  40. Robbie SJ, Lundh von Leithner P, Ju M, Lange C, King AG, Adamson P, Lee D, Sychterz C, Coffey P, Ng Y-S, Bainbridge JW, Skima DT (2013) Assessing a novel depot delivery strategy for non-invasive administrationof VEGF/PDGF RTK inhibitors for ocular neovascular disease. Investig Ophthalmol Vis Sci 54(2):1490–1500. doi: 10.1167/iovs. 12-10169 CrossRefGoogle Scholar
  41. Salpeter MM, Bachmann L, Salpeter EE (1969) Resolution in electron microscope radioautography. J Cell Biol 41:1–40CrossRefPubMedCentralPubMedGoogle Scholar
  42. Solon E (2007) Autoradiography: high-resolution molecular imaging in pharmaceutical discovery and development. Expert Opin Drug Discov 2(4):503–514CrossRefPubMedGoogle Scholar
  43. Solon EG (2012) Use of radioactive compounds and autoradiography to determine drug tissue distribution. Chem Res Toxicol. doi: 10.1021/tx200509f PubMedGoogle Scholar
  44. Solon EG, Kraus L (2002) Quantitative whole-body autoradiography in the pharmaceutical industry. Survey results on study design, methods and regulatory compliance. J Pharmacol Toxicol Methods 43:73–81Google Scholar
  45. Solon E, Lee F (2002) Methods determining phosphor imaging limits of quantitation in whole-body autoradiography rodent tissue distribution studies affect predictions of 14C human dosimetry. J Pharmacol Toxicol Methods 46:83–91CrossRefGoogle Scholar
  46. Solon EG, Schweitzer A, Stoeckli M, Prideaux B (2010) Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J 12(1):11–26CrossRefPubMedCentralPubMedGoogle Scholar
  47. Solon E, Lordi A, Lander J, Shen H, (2013) Important considerations for the use of 125I-labeled proteins to examine ADME characteristics of iodinated compounds. 2013 AAPS National Biotechnology Conference. San Diego, CAGoogle Scholar
  48. Stumpf WE (2003) Drug localization in tissues and cells. Library of Congress Control Number 2003105179. IDDC PressGoogle Scholar
  49. Stumpf WE, Roth LJ (1964) Vacuum freeze drying of frozen sections for dry-mounting high resolution autoradiography. Stain Technol 39:219–223PubMedGoogle Scholar
  50. Ullberg S (1954) Studies on the distribution and fate of 35S-Labelled benzylpenicillin in the body. Acta Radiol Suppl 118:1–110PubMedGoogle Scholar
  51. Ullberg S (1977) The technique of whole-body autoradiography: cryosectioning of large specimens. In: Elvefeldt O (Ed.) Special issue on whole-body autoradiography. Sweden LKB Instr. J. Science Tools, BrommaGoogle Scholar
  52. Venturi S, Venturi M (1999) Iodide, thyroid and stomach carcinogenesis: evolutionary story of a primitive antioxidant? Eur J Endocrinol 140:371–372CrossRefPubMedGoogle Scholar
  53. von Bartheld CS (2001) Tracing with radiolabeled neurotrophins. Methods Mol Biol 169:195–216Google Scholar
  54. Walker MD, Goorden MC, Dinelle K, Ramakers RM, Blinder S, Shirmohammad M, van der Have F, Beekman FJ, Sossi V (2014) Performance assessment of a preclinical PET scanner with pinhole collimation by comparison to a coincidence-based small-animal PET scanner. J Nucl Med 55(8):1368–1374. doi: 10.2967/jnumed.113.136663 CrossRefPubMedGoogle Scholar
  55. Wang Y, Zhang Y-L, Hennig K, Gale JP, Hong Y, Cha A, Riley M, Wagner F, Haggarty SJ, Holson E, Hooker J (2013) Class I HDAC imaging using [3H]CI-994 autoradiography. Epigenetics 8(7):756–764CrossRefPubMedCentralPubMedGoogle Scholar
  56. Ward PD, La D (2014) Testicular distribution and toxicity of a novel LTA4H inhibitor in rats. Toxicol Appl Pharmacol 278(1):26–30CrossRefPubMedGoogle Scholar
  57. Williams MA (1969) In: Advances in optical and electron microscopy. Barer R, Cosslett VE (eds) Advances in optical and electron microscopy, vol 3. Academic, New York, pp 219–272Google Scholar
  58. Woodburn KW, Fong KL, Wilson SD, Sloneker S, Strzmeinski P, SolonE MY, Tagawa Y (2013) Peginesatide clearance, distribution, metabolism, and excretion in monkeys following intravenous administration. Drug Metab Dispos 41(4):774–784CrossRefPubMedGoogle Scholar
  59. Yue Q, Mulder T, Rudewicz PJ, Solon E, Budha N, Ware JA, Lyssikatos J, Hop CE, Wong H, Khojasteh SC (2013) Evaluation of metabolism and disposition of GDC-0152 in rats using 14C labeling strategy at two different positions: a novel formation of hippuric acid from 4-phenyl-5-amino-1,2,3-thiadiazole. Drug Metab Dispos 41(2):508–517CrossRefPubMedGoogle Scholar
  60. Zane PA, Brindle SD, Gause DO, O’Buck AJ, Raghavan PR, Tripp SL (1990) Physicochemical factors associated with binding and retention of compounds in ocular melanin of rats: correlations using data from whole-body autoradiography and molecular modeling for multiple linear regression analyses. Pharmacol Res 7(9):935–941CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.QPS, LLCNewarkUSA

Personalised recommendations