Skip to main content
Log in

The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The midgut represents the middle part of the alimentary canal and is responsible for nutrient digestion and absorption in insect larva. Despite the growing interest in this organ for different purposes, such as studies on morphogenesis and differentiation, stem cell biology, cell death processes and transport mechanisms, basic information on midgut development is still lacking for a large proportion of insect species. Undoubtedly, this lack of data could hinder the full exploitation of practical applications that involve midgut as their primary target. This may represent in particular a significant problem for Lepidoptera, an insect order that includes some of the most important species of high economic importance. With the aim of overcoming this fragmentation of knowledge, we performed a detailed morphofunctional analysis of the midgut of the silkworm, Bombyx mori, a representative model among Lepidoptera, during its development from the larval up to the adult stage, focusing attention on stem cells. Our data demonstrate stem cell proliferation and differentiation, not only in the larval midgut but also in the pupal and adult midgut epithelium. Moreover, we present evidence for a complex trophic relationship between the dying larval epithelium and the new adult one, which is established during metamorphosis. This study, besides representing the first morphological and functional characterization of the changes that occur in the midgut of a lepidopteron during the transition from the larva to the moth, provides a detailed analysis of the midgut of the adult insect, a stage that has been neglected up to now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akai H (1970) An electron microscopy study of the alimentary canal of the silkworm, Bombyx mori L. I. The ultrastructure of the midgut epithelium. Bull Sericult Exp Sta 24:303–344

    Google Scholar 

  • Baldwin KM, Hakim R, Loeb M, Sadrud-Din S (1996) Midgut development. In: Lehane MJ, Billingsley PF (eds) Biology of the insect midgut. Chapman & Hall, London, pp 31–54

    Chapter  Google Scholar 

  • Baton LA, Ranford-Cartwright LC (2007) Morphological evidence for proliferative regeneration of the Anopheles stephensi midgut epithelium following Plasmodium falciparum ookinete invasion. J Invertebr Pathol 96:244–254

    Article  CAS  PubMed  Google Scholar 

  • Berry DL, Baehrecke EH (2007) Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131:1137–1148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009a) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Gene Dev 23:2333–2344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009b) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5:200–211

    Article  CAS  PubMed  Google Scholar 

  • Cai MJ, Liu W, He HJ, Wang JX, Zhao XF (2012) Mod(mdg4) participates in hormonally regulated midgut programmed cell death during metamorphosis. Apoptosis 17:1327–1339

    Article  CAS  PubMed  Google Scholar 

  • Cappellozza L, Cappellozza S, Saviane A, Sbrenna G (2005) Artificial diet rearing system for the silkworm Bombyx mori (Lepidoptera: Bombycidae): effect of vitamin C deprivation on larval growth and cocoon production. Appl Entomol Zool 40:405–412

    Article  CAS  Google Scholar 

  • Casartelli M, Leonardi MG, Fiandra L, Parenti P, Giordana B (2001) Multiple transport pathways for dibasic amino acids in the larval midgut of the silkworm Bombyx mori. Insect Biochem Mol Biol 31:621–632

  • Cermenati G, Corti P, Caccia S, Giordana B, Casartelli M (2007) A morphological and functional characterization of Bombyx mori larval midgut cells in culture. Invert Surv J 4:119–126

    Google Scholar 

  • Cioffi M (1979) The morphology and fine structure of the larval midgut of a moth (Manduca sexta) in relation to active ion transport. Tissue Cell 11:467–479

    Article  CAS  PubMed  Google Scholar 

  • Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, Simoes Rde M, Gruber S, Puc U, Ebersberger I, Zoranovic T, Neely GG, von Haeseler A, Ferrandon D, Penninger JM (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325:340–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Sousa MEC, Wanderley-Teixeira V, Teixeira AAC, de Siqueira HAA, Santos FAB, Alves LC (2009) Ultrastructure of the Alabama argillacea (Hubner) (Lepidoptera: Noctuidae) midgut. Micron 40:743–749

    Article  PubMed  Google Scholar 

  • Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH, Kumar S (2009) Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr Biol 19:1741–1746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dow JAT (1986) Insect midgut function. Adv Insect Physiol 19:187–328

    Article  CAS  Google Scholar 

  • Endo Y, Nishiitsutsuju-Uwo J (1981) Gut endocrine cells in insects: the ultrastructure of the gut endocrine cells of the lepidopterous species. Biomed Res 2:270–280

    Google Scholar 

  • Fernandes KM, Neves CA, Serrao JE, Martins GF (2014) Aedes aegypti midgut remodeling during metamorphosis. Parasitol Int 63:506–512

    Article  PubMed  Google Scholar 

  • Franzetti E, Congiu T, Basso P, de Eguileor M, Tettamanti G (2012a) A new approach for three-dimensional visualization of cryostat sections. In: Méndez-Vilas A (ed) Current microscopy contributions to advances in science and technology, vol 1. Microscopy Series. Formatex Research Center, Badajoz, pp 148–153

    Google Scholar 

  • Franzetti E, Huang ZJ, Shi YX, Xie K, Deng XJ, Li JP, Li QR, Yang WY, Zeng WN, Casartelli M, Deng HM, Cappellozza S, Grimaldi A, Xia Q, Feng Q, Cao Y, Tettamanti G (2012b) Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis 17:305–324

    Article  CAS  PubMed  Google Scholar 

  • Franzetti E, Romanelli D, Tettamanti G (2014) The key role of autophagy and its relationship with apoptosis in lepidopteran larval midgut remodeling. In: Hayat MA (ed) Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging, vol 3. Elsevier, Amsterdam, pp 333–349

    Chapter  Google Scholar 

  • Giordana B, Leonardi MG, Casartelli M, Consonni P, Parenti P (1998) K(+)-neutral amino acid symport of Bombyx mori larval midgut: a system operative in extreme conditions. Am J Physiol 274:R1361–R1371

    CAS  PubMed  Google Scholar 

  • Giordana B, Leonardi MG, Tasca M, Villa M, Parenti P (1994) The amino acid/K1 symporters for neutral amino acids along the midgut of lepidopteran larvae: functional differentiations. J Insect Physiol 40:1059–1068

    Article  CAS  Google Scholar 

  • Giordana B, Sacchi VF, Hanozet GM (1982) Intestinal amino acid absoprtion in lepidopteran larvae. Biochim Biophys Acta 692:81–88

    Article  CAS  Google Scholar 

  • Gomes FM, Carvalho DB, Peron AC, Saito K, Miranda K, Machado EA (2012) Inorganic polyphosphates are stored in spherites within the midgut of Anticarsia gemmatalis and play a role in copper detoxification. J Insect Physiol 58:211–219

    Article  CAS  PubMed  Google Scholar 

  • Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 55:593–608

    Article  CAS  PubMed  Google Scholar 

  • Hakim RS, Baldwin KM, Loeb M (2001) The role of stem cells in midgut growth and regeneration. In Vitro Cell Dev Biol Anim 37:338–342

    CAS  PubMed  Google Scholar 

  • Hans F, Dimitrov S (2001) Histone H3 phosphorylation and cell division. Oncogene 20:3021–3027

    Article  CAS  PubMed  Google Scholar 

  • Hoffman KL, Weeks JC (2001) Role of caspases and mitochondria in the steroid-induced programmed cell death of a motoneuron during metamorphosis. Dev Biol 229:517–536

    Article  CAS  PubMed  Google Scholar 

  • Judy KJ, Gilbert LI (1970) Histology of the alimentary canal during the metamorphosis of Hyalophora cecropia (L.). J Morphol 131:277–300

    Article  Google Scholar 

  • Leonardi MG, Casartelli M, Parenti P, Giordana B (1998) Evidence for a low-affinity, high-capacity uniport for amino acids in Bombyx mori larval midgut. Am J Physiol 274:R1372–R1375

    CAS  PubMed  Google Scholar 

  • Levy SM, Falleiros AMF, Gregorio EA, Arrebola NR, Toledo LA (2004) The larval midgut of Anticarsia gemmatalis (Hubner) (Lepidoptera: Noctuidae): light and electron microscopy studies of epithelial cells. Braz J Biol 64:633–638

    Article  CAS  PubMed  Google Scholar 

  • Lipovsek S, Letofsky-Papst I, Hofer F, Pabst MA (2002) Seasonal- and age-dependent changes of the structure and chemical composition of the spherites in the midgut gland of the harvestmen Gyas annulatus (Opiliones). Micron 33:647–654

    Article  CAS  PubMed  Google Scholar 

  • Loeb MJ (2010) Factors affecting proliferation and differentiation of lepidopteran midgut stem cells. Arch Insect Biochem 74:1–16

    Article  CAS  Google Scholar 

  • Loeb MJ, Clark EA, Blackburn M, Hakim RS, Elsen K, Smagghe G (2003) Stem cells from midguts of Lepidopteran larvae: clues to the regulation of stem cell fate. Arch Insect Biochem Physiol 53:186–198

    Article  CAS  PubMed  Google Scholar 

  • Loeb MJ, Coronel N, Natsukawa D, Takeda M (2004) Implications for the functions of the four known midgut differentiation factors: an immunohistologic study of Heliothis virescens midgut. Arch Insect Biochem Physiol 56:7–20

    Article  CAS  PubMed  Google Scholar 

  • Loeb MJ, Hakim RS (1996) Insect midgut epithelium in vitro: an insect stem cell system. J Insect Physiol 42:1103–1111

    Article  CAS  Google Scholar 

  • Loeb MJ, Jaffe H, Gelman DB, Hakim RS (1999) Two polypeptide factors that promote differentiation of insect midgut stem cells in vitro. Arch Insect Biochem 40:129–140

    Article  CAS  Google Scholar 

  • Loeb MJ, Martin PA, Narang N, Hakim RS, Goto S, Takeda M (2001) Control of life, death, and differentiation in cultured midgut cells of the lepidopteran, Heliothis virescens. In Vitro Cell Dev Biol Anim 37:348–352

    CAS  PubMed  Google Scholar 

  • Malagoli D, Abdalla FC, Cao Y, Feng QL, Fujisaki K, Gregorc A, Matsuo T, Nezis IP, Papassideri IS, Sass M, Silva-Zacarin ECM, Tettamanti G, Umemiya-Shirafuji R (2010) Autophagy and its physiological relevance in arthropods: current knowledge and perspectives. Autophagy 6:575–588

    Article  CAS  PubMed  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Nelliot A, Bond N, Hoshizaki DK (2006) Fat-body remodeling in Drosophila melanogaster. Genesis 44:396–400

    Article  CAS  PubMed  Google Scholar 

  • Newmark PA, Sanchez Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153

    Article  CAS  PubMed  Google Scholar 

  • Pigino G, Migliorini M, Paccagnini E, Bernini F (2006) Localisation of heavy metals in the midgut epithelial cells of Xenillus tegeocranus (Hermann, 1804) (Acari: Oribatida). Ecotoxicol Environ Saf 64:257–263

    Article  CAS  PubMed  Google Scholar 

  • Reali G, Meneghini A, Trevisan M (1985) Bachicoltura moderna. Edagricole, Bologna

    Google Scholar 

  • Romanelli D, Casati B, Franzetti E, Tettamanti G (2014) A molecular view of autophagy in Lepidoptera. BioMed Res Int. doi:10.1155/2014/902315, Article ID 902315

    Google Scholar 

  • Russell VW, Dunn PE (1991) Lysozyme in the midgut of Manduca sexta during metamorphosis. Arch Insect Biochem Physiol 17:67–80

    Article  CAS  PubMed  Google Scholar 

  • Rybczynski R (2005) Prothoracic hormone. In: Gilbert LI, Iatrou K, Gill SS (eds) Endocrinology, vol 3, Comprehensive Molecular Insect Science. Elsevier Pergamon, Oxford, pp 61–123

    Google Scholar 

  • Sadrud-Din S, Hakim R, Loeb M (1994) Proliferation and differentiation of midgut cells from Manduca sexta, in vitro. Invertebr Reprod Dev 26:197–204

    Article  Google Scholar 

  • Sadrud-Din S, Loeb M, Hakim R (1996) In vitro differentiation of isolated stem cells from the midgut of Manduca sexta larvae. J Exp Biol 199:319–325

    Article  PubMed  Google Scholar 

  • Sakai T, Satake H, Minakata H, Takeda M (2004) Characterization of crustacean cardioactive peptide as a novel insect midgut factor: isolation, localization, and stimulation of alpha-amylase activity and gut contraction. Endocrinology 145:5671–5678

    Article  CAS  PubMed  Google Scholar 

  • Silva MT (2010) Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett 584:4491–4499

    Article  CAS  PubMed  Google Scholar 

  • Spies AG, Spence KD (1985) Effect of sublethal Bacillus thuringiensis crystal endotoxin treatment on the larval midgut of a moth, Manduca: SEM study. Tissue Cell 17:379–394

    Article  CAS  PubMed  Google Scholar 

  • Sumithra P, Britto CP, Krishnan M (2010) Modes of cell death in the pupal perivisceral fat body tissue of the silkworm Bombyx mori L. Cell Tissue Res 339:349–358

    Article  PubMed  Google Scholar 

  • Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol B 109:1–62

    Article  Google Scholar 

  • Terra WR, Ferreira C (2005) Biochemistry of digestion. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Elsevier Pergamon, Oxford, pp 171–224

    Chapter  Google Scholar 

  • Tettamanti G, Cao Y, Feng Q, Grimaldi A, de Eguileor M (2011) Autophagy in Lepidoptera: more than old wine in new bottle. Invertebr Surv J 8:5–14

    Google Scholar 

  • Tettamanti G, Casartelli M (2010) Lepidopteran midgut stem cells in culture: a new tool for cell biology and physiological studies. In: Rosales DW, Mullen QN (eds) Pluripotent stem cells. Nova Science Publishers, New York, pp 173–184

  • Tettamanti G, Grimaldi A, Casartelli M, Ambrosetti E, Ponti B, Congiu T, Ferrarese R, Rivas-Pena ML, Pennacchio F, Eguileor M (2007a) Programmed cell death and stem cell differentiation are responsible for midgut replacement in Heliothis virescens during prepupal instar. Cell Tissue Res 330:345–359

    Article  PubMed  Google Scholar 

  • Tettamanti G, Grimaldi A, Pennacchio F, de Eguileor M (2007b) Lepidopteran larval midgut during prepupal instar: digestion or self-digestion? Autophagy 3:630–631

    Article  PubMed  Google Scholar 

  • Tettamanti G, Salo E, Gonzalez-Estevez C, Felix DA, Grimaldi A, de Eguileor M (2008) Autophagy in invertebrates: insights into development, regeneration and body remodeling. Curr Pharm Des 14:116–125

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS ONE 4:e6225

    Article  PubMed Central  PubMed  Google Scholar 

  • Tsujita M (1943) Histological and cytological studies of the midgut epithelial cells in the silkworm. Bull Sericult Exp Sta 11:211–293

    Google Scholar 

  • Turbeck B (1974) A study of the concentrically laminated concretions, 'spherites' in the regenerative cells of the midgut of Lepidopterous larvae. Tissue Cell 6:627–640

    Article  CAS  PubMed  Google Scholar 

  • Uwo MF, Ui-Tei K, Park P, Takeda M (2002) Replacement of midgut epithelium in the greater wax moth, Galleria mellonela, during larval-pupal moult. Cell Tissue Res 308:319–331

    Article  PubMed  Google Scholar 

  • Waku Y, Sumimoto KI (1971) Metamorphosis of midgut epithelial cells in the silkworm (Bombyx mori L.) with special regard to the calcium salt deposits in the cytoplasm. I. Light microscopy. Tissue Cell 3:127–136

    Article  CAS  PubMed  Google Scholar 

  • Waku Y, Sumimoto KI (1974) Metamorphosis of midgut epithelial cells in the silkworm (Bombyx mori L.) with special regard to the calcium salt deposits in the cytoplasm. II. Electron microscopy. Tissue Cell 6:127–136

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek H, Grber G, Harvey WR, Huss M, Merzendorfer H, Zeiske W (2000) Structure and regulation of insect plasma membrane H(+)V-ATPase. J Exp Biol 203:127–135

    CAS  PubMed  Google Scholar 

  • Wigglesworth VB (1972) Digestion and nutrition. The principles of insect physiology. Chapman & Hall, London, pp 476–552

    Book  Google Scholar 

  • Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL (2009) Monitoring autophagy by electron microscopy in mammalian cells. Methods Enzymol 452:143–164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Italian Ministry of University and Research (PRIN 2008, protocol 2008SMMCJY) and by FAR 2013 (University of Insubria) to G.T. The authors wish to thank Dr. Makio Takeda for providing anti-CCAP antibody and Emanuela Mammoliti and Paola D'Antona for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Morena Casartelli or Gianluca Tettamanti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franzetti, E., Romanelli, D., Caccia, S. et al. The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium. Cell Tissue Res 361, 509–528 (2015). https://doi.org/10.1007/s00441-014-2081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2081-8

Keywords

Navigation