Adams MA, Roughley PJ (1976) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161
Article
Google Scholar
Andreoli SP, Liechty EA, Mallett C (1990) Exogenous adenine nucleotides replete endothelial cell adenosine triphosphate after oxidant injury by adenosine uptake. J Lab Clin Med 115:304–313
CAS
PubMed
Google Scholar
Baer AE, Wang JY, Kraus VB, Setton LA (2001) Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures. J Orthop Res 19:2–10
CAS
PubMed
Article
Google Scholar
Boos N, Wallin A, Gbedegbegnon T, Aebi M, Boesch C (1993) Quantitative MR imaging of lumbar intervertebral disks and vertebral bodies: influence of diurnal water content variations. Radiology 188:351–354
CAS
PubMed
Article
Google Scholar
Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine 20:1307–1314
CAS
PubMed
Google Scholar
Burnstock G (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36:1127–1139
CAS
PubMed
Article
Google Scholar
Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108:1497–1508
CAS
PubMed
Google Scholar
Chou AI, Bansal A, Miller GJ, Nicoll SB (2006) The effect of serial monolayer passaging on the collagen expression profile of outer and inner anulus fibrosus cells. Spine 31:1875–1881
PubMed
Article
Google Scholar
Chowdhury TT, Knight MM (2006) Purinergic pathway suppresses the release of NO and stimulates proteoglycan synthesis in chondrocyte/agarose constructs subjected to dynamic compression. J Cell Physiol 209:845–853
CAS
PubMed
Article
Google Scholar
Croucher LJ, Crawford A, Hatton PV, Russell RG, Buttle DJ (2000) Extracellular ATP and UTP stimulate cartilage proteoglycan and collagen accumulation in bovine articular chondrocyte pellet cultures. Biochim Biophys Acta 18:297–306
Article
Google Scholar
Czamanski J, Yuan TY, Fernando H, Castillo A, Gu WY, Cheung HS, Huang CY (2011) Difference in energy metabolism of annulus fibrosus and nucleus pulposus cells of the intervertebral disc. Cell Mol Bioeng 4:302–310
Article
Google Scholar
Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177
CAS
PubMed
Article
Google Scholar
Fernando HN, Czamanski J, Yuan T-Y, Gu W, Salahadin A, Huang C-YC (2011) Mechanical loading affects the energy metabolism of intervertebral disc cells. J Orthop Res 29:1634–1641
PubMed Central
PubMed
Article
Google Scholar
Freemont AJ (2009) The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology 48:5–10
CAS
PubMed
Article
Google Scholar
Graff RD, Lazarowski ER, Banes AJ, Lee GM (2000) ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheumatol 43:1571–1579
CAS
Article
Google Scholar
Gruber HE, Fisher EC Jr, Desai B, Stasky AA, Hoelscher G, Hanley EN Jr (1997) Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-beta1. Exp Cell Res 235:13–21
CAS
PubMed
Article
Google Scholar
Grunhagen T, Shirazi-Adl A, Fairbank JCT, Urban JPG (2011) Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop Clin N Am 42:465–477
Article
Google Scholar
Higuchi T, Tamura S, Tanaka K, Takagaki K, Saito Y, Endo M (2001) Effects of ATP on regulation of galactosyltransferase-I activity responsible for synthesis of the linkage region between the core protein and glycosaminoglycan chains of proteoglycans. Biochem Cell Biol 79:159–164
CAS
PubMed
Article
Google Scholar
Hirschberg CB, Robbins PW, Abeijon C (1998) Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem 67:49–69
CAS
PubMed
Article
Google Scholar
How-Ran G, Tanaka S, Halperin WE, Cameron LL (1999) Back pain prevalence in US industry and estimates of lost workdays. Am J Public Health 89:1029–1035
Article
Google Scholar
Hutton WC, Elmer WA, Boden SD, Hyon S, Toribatake Y, Tomita K, Hair GA (1999) The effect of hydrostatic pressure on intervertebral disc metabolism. Spine 24:1507
CAS
PubMed
Article
Google Scholar
Johnson WE, Caterson B, Eisenstein SM, Hynds DL, Snow DM, Roberts S (2002) Human intervertebral disc aggrecan inhibits nerve growth in vitro. Arthritis Rheumatol 46:2658–2664
CAS
Article
Google Scholar
Johnson K, Svensson CI, Etten DV, Ghosh SS, Murphy AN, Powell HC, Terkeltaub R (2004) Mediation of spontaneous knee osteoarthritis by progressive chondrocyte ATP depletion in Hartley guinea pigs. Arthritis Rheum 50:1216–1225
CAS
PubMed
Article
Google Scholar
Kasra M, Merryman WD, Loveless KN, Goel VK, Martin JD, Buckwalter JA (2006) Frequency response of pig intervertebral disc cells subjected to dynamic hydrostatic pressure. J Orthop Res 24:1967–1973
PubMed
Article
Google Scholar
Knight MM, Ghori SA, Lee DA, Bader DL (1998) Measurement of the deformation of isolated chondrocytes in agarose subjected to cyclic compression. Med Eng Phys 20:684–688
CAS
PubMed
Article
Google Scholar
Korecki CL, Kuo CK, Tuan RS, Iatridis JC (2009) Intervertebral disc cell response to dynamic compression is age and frequency dependent. J Orthop Res 27:800–806
PubMed Central
PubMed
Article
Google Scholar
Kwon HJ (2012) Extracellular ATP signaling via P2X(4) receptor and cAMP/PKA signaling mediate ATP oscillations essential for prechondrogenic condensation. J Endocrinol 214:337–348
CAS
PubMed
Article
Google Scholar
Kwon HJ, Ohmiya Y, Honma KI, Honma S, Nagai T, Saito K, Yasuda K (2012) Synchronized ATP oscillations have a critical role in prechondrogenic condensation during chondrogenesis. Cell Death Dis 3:e278
CAS
PubMed Central
PubMed
Article
Google Scholar
Lasso de la Vega MC, Terradez P, Obrador E, Navarro J, Pellicer JA, Estrela JM (1994) Inhibition of cancer growth and selective glutathione depletion in Ehrlich tumour cells in vivo by extracellular ATP. Biochem J 298:99–105
CAS
PubMed Central
PubMed
Google Scholar
Lee DA, Knight MM, Bolton JF, Idowu BD, Kayser MV, Bader DL (2000) Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J Biomech 33:81–95
CAS
PubMed
Article
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408
CAS
PubMed
Article
Google Scholar
Maclean JJ, Lee CR, Alini M, Iatridis JC (2004) Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res 22:1193–1200
CAS
PubMed
Article
Google Scholar
Neidlinger-Wilke C, Wurtz K, Urban JP, Borm W, Arand M, Ignatius A, Wilke HJ, Claes LE (2006) Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure. Eur Spine J 15:6
Article
Google Scholar
Neuman RE, Logan MA (1950) The determination of hydroxyproline. J Biol Chem 184:299–306
CAS
PubMed
Google Scholar
Ohshima H, Urban JPG, Bergel DH (1995) Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res 13:22–29
CAS
PubMed
Article
Google Scholar
Paesold G, Nerlich A, Boos N (2007) Biological treatment strategies for disc degeneration: potentials and shortcomings. Eur Spine J 16:447–468
PubMed Central
PubMed
Article
Google Scholar
Pearce RH, Grimmer BJ, Adams ME (1987) Degeneration and the chemical composition of the human lumbar intervertebral disc. J Orthop Res 5:198–205
CAS
PubMed
Article
Google Scholar
Roughley PJ (1976) Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 29:2691–2699
Article
Google Scholar
Urban JPG, Smith S, Fairbank JCT (2004) Nutrition of the intervertebral disc. Spine 29:2700–2709
PubMed
Article
Google Scholar
Usprech J, Chu G, Giardini-Rosa R, Martin K, Waldman SD (2012) The therapeutic potential of exogenous adenosine triphosphate (ATP) for cartilage tissue engineering. Cartil 3:364–373
CAS
Article
Google Scholar
Vieira VP, Rocha JB, Stefanello FM, Balz D, Morsch VM, Schetinger MR (2001) Heparin and chondroitin sulfate inhibit adenine nucleotide hydrolysis in liver and kidney membrane enriched fractions. Int J Biochem Cell Biol 33:1193–1201
CAS
PubMed
Article
Google Scholar
Waldman SD, Usprech J, Flynn LE, Khan AA (2010) Harnessing the purinergic receptor pathway to develop functional engineered cartilage constructs. Osteoarthritis Cartilage 18:864–872
CAS
PubMed
Article
Google Scholar
Walsh AJ, Lotz JC (2004) Biological response of the intervertebral disc to dynamic loading. J Biomech 37:329–337
PubMed
Article
Google Scholar
Wang C, Gonzales S, Levene H, Gu W, Huang CY (2013) Energy metabolism of intervertebral disc under mechanical loading. J Orthop Res 31:1733–1738
CAS
PubMed Central
PubMed
Google Scholar