Skip to main content

ATP promotes extracellular matrix biosynthesis of intervertebral disc cells

Abstract

We have recently found a high accumulation of extracellular adenosine triphosphate (ATP) in the center of healthy porcine intervertebral discs (IVD). Since ATP is a powerful extracellular signaling molecule, extracellular ATP accumulation might regulate biological activities in the IVD. The objective of this study was therefore to investigate the effects of extracellular ATP on the extracellular matrix (ECM) biosynthesis of porcine IVD cells isolated from two distinct anatomical regions: the annulus fibrosus (AF) and nucleus pulposus (NP). ATP treatment significantly promotes ECM deposition and corresponding gene expression (aggrecan and type II collagen) by both cell types in three-dimensional agarose culture. A significant increase in ECM accumulation has been found in AF cells at a lower ATP treatment level (20 μM) compared with NP cells (100 μM), indicating that AF cells are more sensitive to extracellular ATP than NP cells. NP cells also exhibit higher ECM accumulation and intracellular ATP than AF cells under control and treatment conditions, suggesting that NP cells are intrinsically more metabolically active. Moreover, ATP treatment also augments the intracellular ATP level in NP and AF cells. Our findings suggest that extracellular ATP not only promotes ECM biosynthesis via a molecular pathway, but also increases energy supply to fuel that process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Adams MA, Roughley PJ (1976) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161

    Article  Google Scholar 

  • Andreoli SP, Liechty EA, Mallett C (1990) Exogenous adenine nucleotides replete endothelial cell adenosine triphosphate after oxidant injury by adenosine uptake. J Lab Clin Med 115:304–313

    CAS  PubMed  Google Scholar 

  • Baer AE, Wang JY, Kraus VB, Setton LA (2001) Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures. J Orthop Res 19:2–10

    CAS  PubMed  Article  Google Scholar 

  • Boos N, Wallin A, Gbedegbegnon T, Aebi M, Boesch C (1993) Quantitative MR imaging of lumbar intervertebral disks and vertebral bodies: influence of diurnal water content variations. Radiology 188:351–354

    CAS  PubMed  Article  Google Scholar 

  • Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine 20:1307–1314

    CAS  PubMed  Google Scholar 

  • Burnstock G (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36:1127–1139

    CAS  PubMed  Article  Google Scholar 

  • Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108:1497–1508

    CAS  PubMed  Google Scholar 

  • Chou AI, Bansal A, Miller GJ, Nicoll SB (2006) The effect of serial monolayer passaging on the collagen expression profile of outer and inner anulus fibrosus cells. Spine 31:1875–1881

    PubMed  Article  Google Scholar 

  • Chowdhury TT, Knight MM (2006) Purinergic pathway suppresses the release of NO and stimulates proteoglycan synthesis in chondrocyte/agarose constructs subjected to dynamic compression. J Cell Physiol 209:845–853

    CAS  PubMed  Article  Google Scholar 

  • Croucher LJ, Crawford A, Hatton PV, Russell RG, Buttle DJ (2000) Extracellular ATP and UTP stimulate cartilage proteoglycan and collagen accumulation in bovine articular chondrocyte pellet cultures. Biochim Biophys Acta 18:297–306

    Article  Google Scholar 

  • Czamanski J, Yuan TY, Fernando H, Castillo A, Gu WY, Cheung HS, Huang CY (2011) Difference in energy metabolism of annulus fibrosus and nucleus pulposus cells of the intervertebral disc. Cell Mol Bioeng 4:302–310

    Article  Google Scholar 

  • Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177

    CAS  PubMed  Article  Google Scholar 

  • Fernando HN, Czamanski J, Yuan T-Y, Gu W, Salahadin A, Huang C-YC (2011) Mechanical loading affects the energy metabolism of intervertebral disc cells. J Orthop Res 29:1634–1641

    PubMed Central  PubMed  Article  Google Scholar 

  • Freemont AJ (2009) The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology 48:5–10

    CAS  PubMed  Article  Google Scholar 

  • Graff RD, Lazarowski ER, Banes AJ, Lee GM (2000) ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheumatol 43:1571–1579

    CAS  Article  Google Scholar 

  • Gruber HE, Fisher EC Jr, Desai B, Stasky AA, Hoelscher G, Hanley EN Jr (1997) Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-beta1. Exp Cell Res 235:13–21

    CAS  PubMed  Article  Google Scholar 

  • Grunhagen T, Shirazi-Adl A, Fairbank JCT, Urban JPG (2011) Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop Clin N Am 42:465–477

    Article  Google Scholar 

  • Higuchi T, Tamura S, Tanaka K, Takagaki K, Saito Y, Endo M (2001) Effects of ATP on regulation of galactosyltransferase-I activity responsible for synthesis of the linkage region between the core protein and glycosaminoglycan chains of proteoglycans. Biochem Cell Biol 79:159–164

    CAS  PubMed  Article  Google Scholar 

  • Hirschberg CB, Robbins PW, Abeijon C (1998) Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem 67:49–69

    CAS  PubMed  Article  Google Scholar 

  • How-Ran G, Tanaka S, Halperin WE, Cameron LL (1999) Back pain prevalence in US industry and estimates of lost workdays. Am J Public Health 89:1029–1035

    Article  Google Scholar 

  • Hutton WC, Elmer WA, Boden SD, Hyon S, Toribatake Y, Tomita K, Hair GA (1999) The effect of hydrostatic pressure on intervertebral disc metabolism. Spine 24:1507

    CAS  PubMed  Article  Google Scholar 

  • Johnson WE, Caterson B, Eisenstein SM, Hynds DL, Snow DM, Roberts S (2002) Human intervertebral disc aggrecan inhibits nerve growth in vitro. Arthritis Rheumatol 46:2658–2664

    CAS  Article  Google Scholar 

  • Johnson K, Svensson CI, Etten DV, Ghosh SS, Murphy AN, Powell HC, Terkeltaub R (2004) Mediation of spontaneous knee osteoarthritis by progressive chondrocyte ATP depletion in Hartley guinea pigs. Arthritis Rheum 50:1216–1225

    CAS  PubMed  Article  Google Scholar 

  • Kasra M, Merryman WD, Loveless KN, Goel VK, Martin JD, Buckwalter JA (2006) Frequency response of pig intervertebral disc cells subjected to dynamic hydrostatic pressure. J Orthop Res 24:1967–1973

    PubMed  Article  Google Scholar 

  • Knight MM, Ghori SA, Lee DA, Bader DL (1998) Measurement of the deformation of isolated chondrocytes in agarose subjected to cyclic compression. Med Eng Phys 20:684–688

    CAS  PubMed  Article  Google Scholar 

  • Korecki CL, Kuo CK, Tuan RS, Iatridis JC (2009) Intervertebral disc cell response to dynamic compression is age and frequency dependent. J Orthop Res 27:800–806

    PubMed Central  PubMed  Article  Google Scholar 

  • Kwon HJ (2012) Extracellular ATP signaling via P2X(4) receptor and cAMP/PKA signaling mediate ATP oscillations essential for prechondrogenic condensation. J Endocrinol 214:337–348

    CAS  PubMed  Article  Google Scholar 

  • Kwon HJ, Ohmiya Y, Honma KI, Honma S, Nagai T, Saito K, Yasuda K (2012) Synchronized ATP oscillations have a critical role in prechondrogenic condensation during chondrogenesis. Cell Death Dis 3:e278

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Lasso de la Vega MC, Terradez P, Obrador E, Navarro J, Pellicer JA, Estrela JM (1994) Inhibition of cancer growth and selective glutathione depletion in Ehrlich tumour cells in vivo by extracellular ATP. Biochem J 298:99–105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee DA, Knight MM, Bolton JF, Idowu BD, Kayser MV, Bader DL (2000) Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J Biomech 33:81–95

    CAS  PubMed  Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Article  Google Scholar 

  • Maclean JJ, Lee CR, Alini M, Iatridis JC (2004) Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res 22:1193–1200

    CAS  PubMed  Article  Google Scholar 

  • Neidlinger-Wilke C, Wurtz K, Urban JP, Borm W, Arand M, Ignatius A, Wilke HJ, Claes LE (2006) Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure. Eur Spine J 15:6

    Article  Google Scholar 

  • Neuman RE, Logan MA (1950) The determination of hydroxyproline. J Biol Chem 184:299–306

    CAS  PubMed  Google Scholar 

  • Ohshima H, Urban JPG, Bergel DH (1995) Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res 13:22–29

    CAS  PubMed  Article  Google Scholar 

  • Paesold G, Nerlich A, Boos N (2007) Biological treatment strategies for disc degeneration: potentials and shortcomings. Eur Spine J 16:447–468

    PubMed Central  PubMed  Article  Google Scholar 

  • Pearce RH, Grimmer BJ, Adams ME (1987) Degeneration and the chemical composition of the human lumbar intervertebral disc. J Orthop Res 5:198–205

    CAS  PubMed  Article  Google Scholar 

  • Roughley PJ (1976) Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 29:2691–2699

    Article  Google Scholar 

  • Urban JPG, Smith S, Fairbank JCT (2004) Nutrition of the intervertebral disc. Spine 29:2700–2709

    PubMed  Article  Google Scholar 

  • Usprech J, Chu G, Giardini-Rosa R, Martin K, Waldman SD (2012) The therapeutic potential of exogenous adenosine triphosphate (ATP) for cartilage tissue engineering. Cartil 3:364–373

    CAS  Article  Google Scholar 

  • Vieira VP, Rocha JB, Stefanello FM, Balz D, Morsch VM, Schetinger MR (2001) Heparin and chondroitin sulfate inhibit adenine nucleotide hydrolysis in liver and kidney membrane enriched fractions. Int J Biochem Cell Biol 33:1193–1201

    CAS  PubMed  Article  Google Scholar 

  • Waldman SD, Usprech J, Flynn LE, Khan AA (2010) Harnessing the purinergic receptor pathway to develop functional engineered cartilage constructs. Osteoarthritis Cartilage 18:864–872

    CAS  PubMed  Article  Google Scholar 

  • Walsh AJ, Lotz JC (2004) Biological response of the intervertebral disc to dynamic loading. J Biomech 37:329–337

    PubMed  Article  Google Scholar 

  • Wang C, Gonzales S, Levene H, Gu W, Huang CY (2013) Energy metabolism of intervertebral disc under mechanical loading. J Orthop Res 31:1733–1738

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Carlos Barrera and Brittany Rodriguez for their assistance with the isolation of the IVD cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Yuh Charles Huang.

Additional information

This study was supported by grant AR056101 from the NIH and by a VA Merit Review Grant.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonzales, S., Wang, C., Levene, H. et al. ATP promotes extracellular matrix biosynthesis of intervertebral disc cells. Cell Tissue Res 359, 635–642 (2015). https://doi.org/10.1007/s00441-014-2042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2042-2

Keywords

  • Intervertebral disc
  • Extracellular matrix
  • ATP
  • Pig