Skip to main content

Advertisement

Log in

A novel aspect of the structure of the avian thymic medulla

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We provide evidence for the compartmentalization of the avian thymic medulla and identify the avian thymic dendritic cell. The thymic anlage develops from an epithelial cord of the branchial endoderm. Branches of the cord are separated by primary septae of neural crest origin. The dilation of the primary septae produces the keratin-negative area (KNA) of the thymic medulla and fills the gaps of the keratin-positive network (KPN). Morphometric analysis indicates that the KNA takes up about half of the volume of the thymic medulla, which has reticular connective tissue, like peripheral lymphoid organs. The KNA receives blood vessels and in addition to pericytes, the myoid cells of striated muscle structure occupy this area. The myoid cells are of branchial arch or prechordal plate origin providing indirect evidence for the neural crest origin of the KNA. The marginal epithelial cells of the KPN co-express keratin and vimentin intermediate filaments, which indicate their functional peculiarity. The basal lamina of the primary septum is discontinuous on the surface of the KPN providing histological evidence for the loss of the blood-thymus barrier in the medulla. In the center of the KNA, the dendritic cells lie in close association with blood vessels, whereas the B-cells accumulate along the KPN. The organization of the KPN and KNA increases the “surface” of the so-called cortico-medullary border, thereby contributing to the efficacy of central tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akbareian SE, Nagy N, Steiger CE, Mably JD, Miller SA, Hotta R, Molnar D, Goldstein AM (2013) Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production. Dev Biol 382:446–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett AR, Farley A, Blair NF, Gordon J, Sharp L, Blackburn CC (2002) Identification and characterization of thymic epithelial progenitor cells. Immunity 16:803–814

    Article  CAS  PubMed  Google Scholar 

  • Bleul CC, Corbeaux T, Reuter A, Fisch P, Mönting JS, Boehm T (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441:992–996

    Article  CAS  PubMed  Google Scholar 

  • Bockman DE, Kirby ML (1984) Dependence of thymus development on derivatives of the neural crest. Science 223:498–500

    Article  CAS  PubMed  Google Scholar 

  • Boyd RL, Wilson TJ, Bean AG, Ward HA, Gershwin ME (1992) Phenotypic characterization of chicken thymic stromal elements. Dev Immunol 2:51–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brito VN, Souto PC, Cruz-Höfling MA, Ricci LC, Verinaud L (2003) Thymus invasion and atrophy induced by Paracoccidioides brasiliensis in BALB/c mice. Med Mycol 41:83–87

    CAS  PubMed  Google Scholar 

  • De Souza LR, Savino W (1993) Modulation of cytokeratin expression in the hamster thymus: evidence for a plasticity of the thymic epithelium. Dev Immunol 3:137–146

    Article  PubMed Central  PubMed  Google Scholar 

  • Dooley J, Erickson M, Farr AG (2005) An organized medullary epithelial structure in the normal thymus expresses molecules of respiratory epithelium and resembles the epithelial thymic rudiment of nude mice. J Immunol 175:4331–4337

    Article  CAS  PubMed  Google Scholar 

  • Farley AM, Morris LX, Vroegindeweij E, Depreter ML, Vaidya H, Stenhouse FH, Tomlinson SR, Anderson RA, Cupedo T, Cornelissen JJ, Blackburn CC (2013) Dynamics of thymus organogenesis and colonization in early human development. Development 140:2015–2026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farr AG, Dooley JL, Erickson M (2002) Organization of thymic medullary epithelial heterogeneity: implications for mechanisms of epithelial differentiation. Immunol Rev 189:20–27

    Article  CAS  PubMed  Google Scholar 

  • Foster K, Sheridan J, Veiga-Fernandes H, Roderick K, Pachnis V, Adams R, Blackburn C, Kioussis D, Coles M (2008) Contribution of neural crest-derived cells in the embryonic and adult thymus. J Immunol 180:3183–3189

    Article  CAS  PubMed  Google Scholar 

  • Gameiro J, Nagib P, Verinaud L (2010) The thymus microenvironment in regulating thymocyte differentiation. Cell Adh Migr 4:382–390

    Article  PubMed Central  PubMed  Google Scholar 

  • Gill J, Malin M, Sutherland J, Gray D, Hollander G, Boyd R (2003) Thymic generation and regeneration. Immunol Rev 195:28–50

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Manley NR (2011) Mechanisms of thymus organogenesis and morphogenesis. Development 138:3865–3878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guillemot FP, Oliver PD, Peault BM, Le Douarin NM (1984) Cells expressing Ia antigens in the avian thymus. J Exp Med 160:1803–1819

    Article  CAS  PubMed  Google Scholar 

  • Igyártó BZ, Nagy N, Magyar A, Oláh I (2008) Identification of the avian B-cell-specific Bu-1 alloantigen by a novel monoclonal antibody. Poult Sci 87:351–355

    Article  PubMed  Google Scholar 

  • Itoi M, Tsukamoto N, Yoshida H, Amagai T (2007) Mesenchymal cells are required for functional development of thymic epithelial cells. Int Immunol 19:953–964

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson WE, Jenkinson EJ, Anderson G (2003) Differential requirement for mesenchyme in the proliferation and maturation of thymic epithelial progenitors. J Exp Med 198:325–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkinson WE, Rossi SW, Parnell SM, Jenkinson EJ, Anderson G (2007) PDGFRalpha-expressing mesenchyme regulates thymus growth and the availability of intrathymic niches. Blood 109:954–960

    Article  CAS  PubMed  Google Scholar 

  • Johnston MC, Noden DM, Hazelton RD, Coulombre JL, Coulombre AJ (1979) Origins of avian ocular and periocular tissues. Exp Eye Res 29:27–43

    Article  CAS  PubMed  Google Scholar 

  • Klug DB, Carter C, Crouch E, Roop D, Conti CJ, Richie ER (1998) Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc Natl Acad Sci U S A 95:11822–11827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klug DB, Carter C, Gimenez-Conti IB, Richie ER (2002) Cutting edge: thymocyteindependent and thymocyte-dependent phases of epithelial patterning in the fetal thymus. J Immunol 169:2842–2845

    Article  CAS  PubMed  Google Scholar 

  • Krutsay M (1980) Szövettani technika. Medicina, Budapest

    Google Scholar 

  • Lannes-Vieira J, Dardenne M, Savino W (1991) Extracellular matrix components of the mouse thymus microenvironment: ontogenetic studies and modulation by glucocorticoid hormones. J Histochem Cytochem 39:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Le Douarin N (1967) Early determination of the anlagen of the thyroid and thymus glands in the chick embryo. CR Acad Sci Hebd Seances Acad Sci D 264:940–942

    Google Scholar 

  • Le Douarin NM, Dieterlen-Lièvre F, Oliver PD (1984) Ontogeny of primary lymphoid organs and lymphoid stem cells. Am J Anat 170:261–299

    Article  PubMed  Google Scholar 

  • Le Lièvre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34:125–154

    PubMed  Google Scholar 

  • Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD (2009) Thymic involution and immune reconstitution. Trends Immunol 30:366–373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maximov AA, Bloom W (1938) A textbook of histology, 3rd edn. Saunders, Philadelphia London

  • Minkó K, Oláh I (1996) Expression of intermediate filaments and N-cadherin adhesion molecule in the thymus of domesticated birds. Acta Biol Hung 47:323–340

    PubMed  Google Scholar 

  • Moussion C, Girard JP (2011) Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature 479:542–546

    Article  CAS  PubMed  Google Scholar 

  • Müller SM, Stolt CC, Terszowski G, Blum C, Amagai T, Kessaris N, Iannarelli P, Richardson WD, Wegner M, Rodewald HR (2008) Neural crest origin of perivascular mesenchyme in the adult thymus. J Immunol 180:5344–5351

    Article  PubMed  Google Scholar 

  • Nakamura H, Ayer-Le Lièvre C (1986) Neural crest and thymic myoid cells. Curr Top Dev Biol 20:111–115

    Article  CAS  PubMed  Google Scholar 

  • Nakano KE, Nakamura H (1985) Origin of the irideal striated muscle in birds. J Embryol Exp Morphol 88:1–13

    CAS  PubMed  Google Scholar 

  • Napolitano LA, Lo JC, Gotway MB, Mulligan K, Barbour JD, Schmidt D, Grant RM, Halvorsen RA, Schambelan M, McCune JM (2002) Increased thymic mass and circulating naive CD4 T cells in HIV-1-infected adults treated with growth hormone. AIDS 16:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Neves H, Dupin E, Parreira L, Le Douarin NM (2012) Modulation of Bmp4 signalling in the epithelial-mesenchymal interactions that take place in early thymus and parathyroid development in avian embryos. Dev Biol 361:208–219

    Article  CAS  PubMed  Google Scholar 

  • Noden DM (1978) The control of avian cephalic neural crest cytodifferentiation. II. Neural tissues. Dev Biol 67:313–329

    Article  CAS  PubMed  Google Scholar 

  • Noden DM (1983) The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat 168:257–276

    Article  CAS  PubMed  Google Scholar 

  • Olah I, Glick B (1979) Structure of the germinal centers in the chicken caecal tonsil: light and electron microscopic and autoradiographic studies. Poult Sci 58:195–210

    Article  CAS  PubMed  Google Scholar 

  • Olah I, Kendall C, Glick B (1991) Endogenous peroxidase- and vimentin-positive cells accumulate at the corticomedullary border of the chicken thymus. Poult Sci 70:1144–1152

    Article  CAS  PubMed  Google Scholar 

  • Pérez AR, Berbert LR, Lepletier A, Revelli S, Bottasso O, Silva-Barbosa SD, Savino W (2012) TNF-α is involved in the abnormal thymocyte migration during experimental Trypanosoma cruzi infection and favors the export of immature cells. PLoS One 7:e34360

    Article  PubMed Central  PubMed  Google Scholar 

  • Raviola E, Karnovsky MJ (1972) Evidence for a blood-thymus barrier using electronopaque tracers. J Exp Med 136:466–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodewald HR (2008) Thymus organogenesis. Annu Rev Immunol 26:355–388

    Article  CAS  PubMed  Google Scholar 

  • Rodewald HR, Paul S, Haller C, Bluethmann H, Blum C (2001) Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 414:763–768

    Article  CAS  PubMed  Google Scholar 

  • Rossi SW, Chidgey AP, Parnell SM, Jenkinson WE, Scott HS, Boyd RL, Jenkinson EJ, Anderson G (2007) Redefining epithelial progenitor potential in the developing thymus. Eur J Immunol 37:2411–2418

    Article  CAS  PubMed  Google Scholar 

  • Savino W, Villa-Verde DM, Lannes-Vieira J (1993) Extracellular matrix proteins in intrathymic T-cell migration and differentiation? Immunol Today 14:158–161

    Article  CAS  PubMed  Google Scholar 

  • Savino W, Dalmau SR, Dealmeida VC (2000) Role of extracellular matrix-mediated interactions in thymocyte migration. Dev Immunol 7:279–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Savino W, Mendes-Da-Cruz DA, Smaniotto S, Silva-Monteiro E, Villa-Verde DM (2004) Molecular mechanisms governing thymocyte migration: combined role of chemokines and extracellular matrix. J Leukoc Biol 75:951–961

    Article  CAS  PubMed  Google Scholar 

  • Savino W, Dardenne M, Velloso LA, Dayse Silva-Barbosa S (2007) The thymus is a common target in malnutrition and infection. Br J Nutr 98 (Suppl 1):S11–S16

    CAS  PubMed  Google Scholar 

  • Seifert R, Christ B (1990) On the differentiation and origin of myoid cells in the avian thymus. Anat Embryol (Berl) 181:287–298

    Article  CAS  Google Scholar 

  • Tschanz S, Schneider JP, Knudsen L (2014) Design-based stereology: planning, volumetry and sampling are crucial steps for a successful study. Ann Anat 196:3–11

    Article  PubMed  Google Scholar 

  • Van Ewijk W, Rouse RV, Weissman IL (1980) Distribution of H-2 microenvironments in the mouse thymus. Immunoelectron microscopic identification of I-A and H-2K bearing cells. J Histochem Cytochem 28:1089–1099

    Article  PubMed  Google Scholar 

  • Venzke WG (1952) Morphogenesis of the thymus of chicken embryos. Am J Vet Res 13:395–404

    CAS  PubMed  Google Scholar 

  • Vroegindeweij E, Crobach S, Itoi M, Satoh R, Zuklys S, Happe C, Germeraad WT, Cornelissen JJ, Cupedo T, Holländer GA, Kawamoto H, Ewijk W van (2010) Thymic cysts originate from Foxn1 positive thymic medullary epithelium. Mol Immunol 47:1106–1113

  • Yamashita T, Sohal GS (1987) Embryonic origin of skeletal muscle cells in the iris of the duck and quail. Cell Tissue Res 249:31–37

    Article  CAS  PubMed  Google Scholar 

  • Yu E, Lee I (1993) Reticular network of the human thymus. J Korean Med Sci 8:431–436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jutka Fügedi, Zsuzsa Vidra and Mária Bakó for laboratory assistance. Antibodies for tenascin, fibronectin, laminin, collagen type III, desmin, vimentin and MHC II were obtained from the Developmental Studies Hybridoma Bank, developed under the auspices of the NICHD and maintained by the University of Iowa, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Oláh.

Additional information

This work was supported by OTKA grant number 69061 and sponsored by Prophyl Kft., Mohács, Hungary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bódi, I., Minkó, K., Molnár, D. et al. A novel aspect of the structure of the avian thymic medulla. Cell Tissue Res 359, 489–501 (2015). https://doi.org/10.1007/s00441-014-2027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2027-1

Keywords

Navigation