Skip to main content

Advertisement

Log in

Auditory neuroplasticity, hearing loss and cochlear implants

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Data from our laboratory show that the auditory brain is highly malleable by experience. We establish a base of knowledge that describes the normal structure and workings at the initial stages of the central auditory system. This research is expanded to include the associated pathology in the auditory brain stem created by hearing loss. Utilizing the congenitally deaf white cat, we demonstrate the way that cells, synapses, and circuits are pathologically affected by sound deprivation. We further show that the restoration of auditory nerve activity via electrical stimulation through cochlear implants serves to correct key features of brain pathology caused by hearing loss. The data suggest that rigorous training with cochlear implants and/or hearing aids offers the promise of heretofore unattained benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adab HZ, Popivanov ID, Vanduffel W, Vogels R (2014) Perceptual learning of simple stimuli modifies stimulus representations in posterior inferior temporal cortex. J Cogn Neurosci 26:2187-2200

    PubMed  Google Scholar 

  • Adams JC (1986) Neuronal morphology in the human cochlear nucleus. Arch Otolaryngol Head Neck Surg 112:1253–1261

    CAS  PubMed  Google Scholar 

  • Asako M, Holt AG, Griffith RD, Buras ED, Altschuler RA (2005) Deafness-related decreases in glycine-immunoreactive labeling in the rat cochlear nucleus. J Neurosci Res 81:102–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Babalian AL, Ryugo DK, Rouiller EM (2003) Discharge properties of identified cochlear nucleus neurons and auditory nerve fibers in response to repetitive electrical stimulation of the auditory nerve. Exp Brain Res 153:452–460

  • Baker CA, Montey KL, Pongstaporn T, Ryugo DK (2010) Postnatal development of the endbulb of Held in congenitally deaf cats. Front Neuroanat 4:19

    PubMed Central  PubMed  Google Scholar 

  • Bakin JS, Weinberger NM (1990) Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res 536:271–286

    CAS  PubMed  Google Scholar 

  • Baude A, Nusser Z, Roberts JDB, Mulvihill E, McIlhinney RAJ, Somogyi P (1993) The metabotropic glutamate receptor (mGluRa) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–787

    CAS  PubMed  Google Scholar 

  • Beighton P, Ramesar R, Winship I, Viljoen D, Greenberg J, Young K, Curtis D, Sellars S (1991) Hearing impairment and pigmentary disturbance. Ann N Y Acad Sci 630:152–166

    CAS  PubMed  Google Scholar 

  • Belford GR, Killackey HP (1979) Vibrissae representation in subcortical trigeminal centers of the neonatal rat. J Comp Neurol 183:305–321

  • Benes FM, Parks TN, Rubel EW (1977) Rapid dendritic atrophy following deafferentation: an EM morphometric analysis. Brain Res 122:1–13

    CAS  PubMed  Google Scholar 

  • Benson TE, Ryugo DK, Hinds JW (1984) Effects of sensory deprivation on the developing mouse olfactory system: a light and electron microscopic, morphometric analysis. J Neurosci 4:638–653

    CAS  PubMed  Google Scholar 

  • Bergsma DR, Brown KS (1971) White fur, blue eyes, and deafness in the domestic cat. J Hered 62:171–185

    CAS  PubMed  Google Scholar 

  • Bhattacharjee A, Kaczmarek LK (2005) For K+ channels, Na+ is the new Ca2+. Trends Neurosci 28:422–428

    CAS  PubMed  Google Scholar 

  • Born DE, Rubel EW (1985) Afferent influences on brain stem auditory nuclei of the chicken: neuron number and size following cochlea removal. J Comp Neurol 231:435–445

    CAS  PubMed  Google Scholar 

  • Born DE, Durham D, Rubel EW (1991) Afferent influences on brainstem auditory nuclei of the chick: nucleus magnocellularis neuronal activity following cochlea removal. Brain Res 557:37–47

    CAS  PubMed  Google Scholar 

  • Bosher SK, Hallpike CS (1965) Observations on the histological features, development and pathogenesis of the inner ear degeneration of the deaf white cat. Proc R Soc Lond B Biol Sci 162:147–170

    CAS  PubMed  Google Scholar 

  • Boyne AF, Bohan TP, Williams TH (1975) Changes in cholinergic synaptic vesicle populations and the ultrastructure of the nerve terminal membranes of Narcine brasiliensis electron organ stimulated to fatigue in vivo. J Cell Biol 67:814–825

    CAS  PubMed  Google Scholar 

  • Brawer JR, Morest DK (1975) Relations between auditory nerve endings and cell types in the cat’s anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J Comp Neurol 160:491–506

    CAS  PubMed  Google Scholar 

  • Browner RH, Marbey D (1988) The nucleus magnocellularis in the red-eared turtle, Chrysemys scripta elegans: eighth nerve endings and neuronal types. Hear Res 33:257–271

    CAS  PubMed  Google Scholar 

  • Burwen SJ, Satir BH (1977) Plasma membrane folds on the mast cell surface and their relationship to secretory activity. J Cell Biol 74:690–697

    CAS  PubMed  Google Scholar 

  • Cant NB, Morest DK (1979) The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neuroscience 4:1925–1945

    CAS  PubMed  Google Scholar 

  • Carr CE, Boudreau RE (1991) The central projections of auditory nerve fibers in the barn owl. J Comp Neurol 314:306–318

    CAS  PubMed  Google Scholar 

  • Chen I, Limb CJ, Ryugo DK (2010) The effect of cochlear-implant-mediated electrical stimulation on spiral ganglion cells in congenitally deaf white cats. J Assoc Res Otolaryngol 11:587–603

    PubMed Central  PubMed  Google Scholar 

  • Cho WJ, Shin L, Ren G, Jena BP (2009) Structure of membrane-associated neuronal SNARE complex: implication in neurotransmitter release. J Cell Mol Med 13:4161–4165

    CAS  PubMed  Google Scholar 

  • Coco A, Epp SB, Fallon JB, Xu J, Millard RE, Shepherd RK (2007) Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons? Hear Res 225:60–70

    PubMed Central  PubMed  Google Scholar 

  • Cook W, Walker J, Barr M (1965) A cytological study of transneuronal atrophy in the cat and rabbit. J Comp Neurol 94:267–291

    Google Scholar 

  • Couchman K, Grothe B, Felmy F (2010) Medial superior olivary neurons receive surprisingly few excitatory and inhibitory inputs with balanced strength and short-term dynamics. J Neurosci 30:17111–17121

    CAS  PubMed  Google Scholar 

  • Cynader M, Mitchell DE (1980) Prolonged sensitivity to monocular deprivation in dark-reared cats. J Neurophysiol 43:1026–1040

    CAS  PubMed  Google Scholar 

  • David VA, Menotti-Raymond M, Wallace AC, Roelke M, Kehler J, Leighty R, Eizirik E, Hannah SS, Nelson G, Schäffer AA, Connelly CJ, O’Brien SJ, Ryugo DK (2014) Endogenous retrovirus insertion in KIT oncogene determines white and white spotted in domestic cats. G3 (Bethesda) pii:g3.114.013425. doi: 10.1534/g3.114.103425

    Google Scholar 

  • Deitch JS, Rubel EW (1984) Afferent influences on brain stem auditory nuclei of the chicken: time course and specificity of dendritic atrophy following deafferentation. J Comp Neurol 229:66–79

    CAS  PubMed  Google Scholar 

  • Deitch JS, Rubel EW (1989) Rapid changes in ultrastructure during deafferentation-induced dendritic atrophy. J Comp Neurol 281:234–258

    CAS  PubMed  Google Scholar 

  • Deol MS (1970) The relationship between abnormalities of pigmentation and of the inner ear. Proc R Soc Lond B Biol Sci 175:201–217

    CAS  PubMed  Google Scholar 

  • Diamond DM, Weinberger NM (1986) Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Res 372:357–360

    CAS  PubMed  Google Scholar 

  • Drapal M, Marsalek P (2011) Stochastic model explains the role of excitation and inhibition in binaural sound localization in mammals. Physiol Res 60:573–583

    CAS  PubMed  Google Scholar 

  • Eisen MD, Ryugo DK (2007) Hearing molecules: contributions from genetic deafness. Cell Mol Life Sci 64:566–580

    CAS  PubMed  Google Scholar 

  • Evans EF, Palmer AR (1980) Relationship between the dynamic-range of cochlear nerve-fibers and their spontaneous activity. Exp Brain Res 40:115–118

    CAS  PubMed  Google Scholar 

  • Fifková E, van Harreveld A (1977) Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area. J Neurocytol 6:211–230

    PubMed  Google Scholar 

  • Fifková E, Morales M (1992) Actin matrix of dendritic spines, synaptic plasticity, and long-term potentiation. Int Rev Cytol 139:267–307

    PubMed  Google Scholar 

  • Fleming J, Rogers MJ, Brown SD, Steel KP (1994) Linkage analysis of the Whirler deafness gene on mouse chromosome 4. Genomics 21:42–48

    CAS  PubMed  Google Scholar 

  • Flucher BE, Daniels MP (1989) Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 KD protein. Neuron 3:163–175

    CAS  PubMed  Google Scholar 

  • Franklin SR, Brunso-Bechtold JK, Henkel CK (2006) Unilateral cochlear ablation before hearing onset disrupts the maintenance of dorsal nucleus of the lateral lemniscus projection patterns in the rat inferior colliculus. Neuroscience 143:105–115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fraser GR (1976) The causes of profound deafness in childhood. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Gelfan S, Kao G, Ling H (1972) The dendritic tree of spinal neurons in dogs with experimental hind-limb rigidity. J Comp Neurol 146:143–174

    CAS  PubMed  Google Scholar 

  • Gomez-Nieto R, Rubio ME (2011) Ultrastructure, synaptic organization, and molecular components of bushy cell networks in the anteroventral cochlear nucleus of the rhesus monkey. Neuroscience 179:188–207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goodman CS, Shatz CJ (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72:77–98

    PubMed  Google Scholar 

  • Grothe B (2000) The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog Neurobiol 61:581–610

    CAS  PubMed  Google Scholar 

  • Gulley RL, Landis DM, Reese TS (1978) Internal organization of membranes at end bulbs of Held in the anteroventral cochlear nucleus. J Comp Neurol 180:707–741

    CAS  PubMed  Google Scholar 

  • Hancock KE, Noel V, Ryugo DK, Delgutte B (2010) Neural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness. J Neurosci 30:14068–14079

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison RV, Negandhi J (2012) Resting neural activity patterns in auditory brainstem and midbrain in conductive hearing loss. Acta Otolaryngol 132:409–414

  • Hashisaki GT, Rubel EW (1989) Effects of unilateral cochlea removal on anteroventral cochlear nucleus neurons in developing gerbils. J Comp Neurol 283:5–73

  • Heid S, Hartmann R, Klinke R (1998) A model for prelingual deafness, the congenitally deaf white cat–population statistics and degenerative changes. Hear Res 115:101–112

    CAS  PubMed  Google Scholar 

  • Held H (1893) Die centrale Gehörleitung. Arch Anat Physiol Anat Abt 17:201–248

    Google Scholar 

  • Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hildebrandt H, Hoffmann NA, Illing R-B (2011) Synaptic reorganization in the adult rat’s ventral cochlear nucleus following its total sensory deafferentation. PLoS ONE 6:e23686

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hultcrantz M, Snyder R, Rebscher S, Leake P (1991) Effects of neonatal deafening and chronic intracochlear electrical stimulation on the cochlear nucleus in cats. Hear Res 54:272–280

    CAS  PubMed  Google Scholar 

  • Illing R-B, Horvath M, Laszig R (1997) Plasticity of the auditory brainstem: effects of cochlear ablation on GAP-43 immunoreactivity in the rat. J Comp Neurol 382:116–138

    CAS  PubMed  Google Scholar 

  • Jhaveri S, Morest DK (1982) Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: a Golgi study. Neuroscience 7:837–853

    CAS  PubMed  Google Scholar 

  • Joris PX, Yin TC (1998) Envelope coding in the lateral superior olive. III. Comparison with afferent pathways. J Neurophysiol 79:253–269

    CAS  PubMed  Google Scholar 

  • Kandler K (2004) Activity-dependent organization of inhibitory circuits: lessons from the auditory system. Curr Opin Neurobiol 14:96–104

    CAS  PubMed  Google Scholar 

  • Keats BJ, Corey DP (1999) The usher syndromes. Am J Med Genet 89:158–166

    CAS  PubMed  Google Scholar 

  • Kennedy MB (1989) Regulation of neuronal function by calcium. Trends Neurosci 12:417–420

    CAS  PubMed  Google Scholar 

  • Kiang NY-S, Watanabe T, Thomas EC, Clark LF (1965) Discharge patterns of single fibers in the cat’s auditory nerve. MIT Press, Cambridge

    Google Scholar 

  • Klinke R, Hartmann R, Heid S, Tillein J, Kral A (2001) Plastic changes in the auditory cortex of congenitally deaf cats following cochlear implantation. Audiol Neurootol 6:203–206

    CAS  PubMed  Google Scholar 

  • Konishi M (1985) Birdsong: from behavior to neuron. Annu Rev Neurosci 8:125–170

    CAS  PubMed  Google Scholar 

  • Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2002) Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cereb Cortex 12:797–807

    CAS  PubMed  Google Scholar 

  • Kral A, Tillein J, Heid S, Klinke R, Hartmann R (2006) Cochlear implants: cortical plasticity in congenital deprivation. Prog Brain Res 157:283–313

    PubMed  Google Scholar 

  • Larsen SA, Kirchhoff TM (1992) Anatomical evidence of synaptic plasticity in the cochlear nuclei of white-deaf cats. Exp Neurol 115:151–157

    CAS  PubMed  Google Scholar 

  • Leake PA, Hradek GT (1988) Cochlear pathology of long term neomycin induced deafness in cats. Hear Res 33:11–33

    CAS  PubMed  Google Scholar 

  • Leake PA, Hradek GT, Snyder RL (1999) Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. J Comp Neurol 412:543–562

    CAS  PubMed  Google Scholar 

  • Lee DJ, Cahill HB, Ryugo DK (2003) Effects of congenital deafness in the cochlear nuclei of Shaker-2 mice: an ultrastructural analysis of synapse morphology in the endbulbs of Held. J Neurocytol 32:229–243

    PubMed  Google Scholar 

  • Lenn NJ, Reese TS (1966) The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am J Anat 118:375–389

    CAS  PubMed  Google Scholar 

  • Lesperance MM, Helfert RH, Altschuler RA (1995) Deafness induced cell size changes in rostral AVCN of the guinea pig. Hear Res 86:77–81

    CAS  PubMed  Google Scholar 

  • LeVay S, Wiesel TN, Hubel DH (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191:1–51

    CAS  PubMed  Google Scholar 

  • LeVay S, Wiesel TN, Hubel DH (1981) The postnatal development and plasticity of ocular-dominance columns in the monkey. In: Schmitt FO, Worden F, Adelman G, Dennis SG (eds) The organization of the cerebral cortex: proceedings of a neuroscience research program colloquium. MIT Press, Cambridge, pp 29–45

    Google Scholar 

  • Levi-Montalcini R (1949) The development of the acoustico-vestibular centers in the chick embryo in the absence of the afferent root fibers and of descending fiber tracts. J Comp Neurol 91:209–242

    CAS  PubMed  Google Scholar 

  • Lewis MA, Steel KP (2012) A cornucopia of candidates for deafness. Cell 150:879–881

    CAS  PubMed  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455

    CAS  PubMed  Google Scholar 

  • Liberman MC (1982) The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449

    CAS  PubMed  Google Scholar 

  • Limb CJ, Ryugo DK (2000) Development of primary axosomatic endings in the anteroventral cochlear nucleus of mice. J Assoc Res Otolaryngol 1:103–119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorente de Nó R (1981) The primary acoustic nuclei. Raven, New York

    Google Scholar 

  • Lorenz K (1935) Der Kumpan in der Umwelt des Vogels. Der Artgenosse als auslösendes Moment sozialer Verhaltensweisen. J Ornithol 83:137–213

    Google Scholar 

  • Lund RD, Cunningham TJ, Lund JS (1973) Modified optic projections after unilateral eye removal in young rats. Brain Behav Evol 8:51–72

    CAS  PubMed  Google Scholar 

  • Lustig LR, Leake PA, Snyder RL, Rebscher SJ (1994) Changes in the cat cochlear nucleus following neonatal deafening and chronic intracochlear electrical stimulation. Hear Res 74:29–37

    CAS  PubMed  Google Scholar 

  • Mair IW (1973) Hereditary deafness in the white cat. Acta Otolaryngol Suppl 314:1–48

    CAS  PubMed  Google Scholar 

  • Manzoor NF, Gao Y, Licari F, Kaltenbach JA (2013) Comparison and contrast of noise-induced hyperativity in the dorsal cochlear nucleus and inferior colliculus. Hear Res 295:114–123

  • Markus EJ, Petit TL (1989) Synaptic structural plasticity: role of synaptic shape. Synapse 3:1–11

  • Mathews M, Powell TPS (1962) Some observations on transneuronal cell degeneration in the olfactory bulb of the rabbit. J Anat 96:89–102

    Google Scholar 

  • McMahon HT, Kozlov MM, Martens S (2010) Membrane curvature in synaptic vesicle fusion and beyond. Cell 140:601–605

    CAS  PubMed  Google Scholar 

  • Molnar CE, Pfeiffer RR (1968) Interpretation of spontaneous spike discharge patterns of neurons in the cochlear nucleus. Proc IEEE 56:993–1004

    Google Scholar 

  • Moore DR (1985) Postnatal development of the mammalian central auditory system and the neural consequences of auditory deprivation. Acta Otolaryngologica 421:19–30

    CAS  Google Scholar 

  • Moore DR (1990) Effects of early auditory experience on development of binaural pathways in the brain. Semin Perinatol 14:294–298

    CAS  PubMed  Google Scholar 

  • Moore DR, Kitzes LM (1985) Projections from the cochlear nucleus to the inferior colliculus in normal and neonatally cochlea-ablated gerbils. J Comp Neurol 240:180–195

    CAS  PubMed  Google Scholar 

  • Moore DR, Kowalchuk NE (1988) Auditory brainstem of the ferret: effects of unilateral cochlear lesions on cochlear nucleus volume and projections to the inferior colliculus. J Comp Neurol 272:503–515

    CAS  PubMed  Google Scholar 

  • Mostafapour SP, Cochran SL, Del Puerto NM, Rubel EW (2000) Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J Comp Neurol 426:561–571

    CAS  PubMed  Google Scholar 

  • Murthy VN, Schikorski T, Stevens CF, Zhu Y (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32:673–682

    CAS  PubMed  Google Scholar 

  • Ni D, Seldon HL, Shepherd RK, Clark GM (1993) Effect of chronic electrical stimulation on cochlear nucleus neuron size in normal hearing kittens. Acta Otolaryngol 113:489–497

    CAS  PubMed  Google Scholar 

  • Nordeen KW, Killackey HP, Kitzes LM (1983) Ascending projections to the inferior colliculus following unilateral cochlear ablation in the neonatal gerbil, Meriones unguiculatus. J Comp Neurol 214:144–153

    CAS  PubMed  Google Scholar 

  • Nusser Z, Mulvihill E, Streit P, Somogyi P (1994) Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61:421–427

    CAS  PubMed  Google Scholar 

  • Oleskevich S, Walmsley B (2002) Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice. J Physiol (Lond) 540:447–455

    CAS  Google Scholar 

  • Oleskevich S, Youssoufian M, Walmsley B (2004) Presynaptic plasticity at two giant auditory synapses in normal and deaf mice. J Physiol (Lond) 560:709–719

    CAS  Google Scholar 

  • O’Neil JN, Limb CJ, Baker CA, Ryugo DK (2010) Bilateral effects of unilateral cochlear implantation in congenitally deaf cats. J Comp Neurol 518:2382–2404

    PubMed Central  PubMed  Google Scholar 

  • Osako S, Hilding DA (1971) Electron microscopic studies of capillary permeability in normal and Ames Waltzer deaf mice. Acta Otolaryngol 71:365–376

    CAS  PubMed  Google Scholar 

  • Parks TN (1979) Afferent influences on the development of the brain stem auditory nuclei of the chicken: otocyst ablation. J Comp Neurol 183:665–677

    CAS  PubMed  Google Scholar 

  • Parks TN, Taylor DA, Jackson H (1990) Adaptations of synaptic form in an aberrant projection to the avian cochlear nucleus. J Neurosci 10:975–984

    CAS  PubMed  Google Scholar 

  • Pasic TR, Moore DR, Rubel EW (1994) Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil. J Comp Neurol 348:111–120

    CAS  PubMed  Google Scholar 

  • Powell TP, Erulkar SD (1962) Transneuronal cell degeneration in the auditory relay nuclei of the cat. J Anat 96:249–268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pujol R, Rebillard M, Rebillard G (1977) Primary neural disorders in the deaf white cat cochlea. Acta Otolaryngol 83:59–64

    CAS  PubMed  Google Scholar 

  • Qin L, Marrs GS, McKim R, Dailey ME (2001) Hippocampal mossy fibers induce assembly and clustering of PSD95-containing postsynaptic densities independent of glutamate receptor activation. J Comp Neurol 440:284–298

    CAS  PubMed  Google Scholar 

  • Raviola E, Wiesel TN (1985) An animal model of myopia. N Engl J Med 312:1609–1615

    CAS  PubMed  Google Scholar 

  • Rawitz B (1896) Gehörorgan und Gehirn eines weissen Hundes mit blauen Augen. Morphol Arb 6:545–554

    Google Scholar 

  • Rebillard M, Pujol R, Rebillard G (1981) Variability of the hereditary deafness in the white cat. II. Histology. Hear Res 5:189–200

    CAS  PubMed  Google Scholar 

  • Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13:87–103

    CAS  PubMed  Google Scholar 

  • Redd EE, Pongstaporn T, Ryugo DK (2000) The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hear Res 147:160–174

    CAS  PubMed  Google Scholar 

  • Redd EE, Cahill HB, Pongstaporn T, Ryugo DK (2002) The effects of congenital deafness on auditory nerve synapses: type I and type II multipolar cells in the anteroventral cochlear nucleus of cats. J Assoc Res Otolaryngol 3:403–417

    PubMed Central  PubMed  Google Scholar 

  • Rees S, Guldner FH, Aitkin L (1985) Activity dependent plasticity of postsynaptic density structure in the ventral cochlear nucleus of the rat. Brain Res 325:370–374

    CAS  PubMed  Google Scholar 

  • Rice FL (1985) Gradual changes in the structure of the barrels during maturation of the primary somatosensory cortex in the rat. J Comp Neurol 236:496–503

    CAS  PubMed  Google Scholar 

  • Robertson D, Irvine DR (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282:456–471

    CAS  PubMed  Google Scholar 

  • Robertson D, Bester C, Vogler D, Mulders WH (2012) Spontaneous hyperactivity in the auditory midbrain: relationship to afferent input. Hear Res 295:124–129

    PubMed  Google Scholar 

  • Rowland KC, Irby NK, Spirou GA (2000) Specialized synapse-associated structures within the calyx of Held. J Neurosci 20:9135–9144

    CAS  PubMed  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101

    CAS  PubMed  Google Scholar 

  • Rubel EW, Parks TN (1988) Organization and development of the avian brain-stem auditory system. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory function—neurobiological bases of hearing. Wiley, New York, pp 3–92

    Google Scholar 

  • Rubel EW, Parks TN, Zirpel L (2004) Assembling, connecting, and maintaining the cochlear nucleus. In: Parks TN, Rubel EW, Fay RR, Popper AN (eds) Plasticity of the auditory system. Springer Handbook of Auditory Research. Springer, New York, pp 8–48

    Google Scholar 

  • Ryugo DK, Fekete DM (1982) Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: a study of the endbulbs of Held. J Comp Neurol 210:239–257

    CAS  PubMed  Google Scholar 

  • Ryugo DK, Parks TN (2003) Primary innervation of the avian and mammalian cochlear nucleus. Brain Res Bull 60:435–456

    PubMed  Google Scholar 

  • Ryugo DK, Sento S (1991) Synaptic connections of the auditory nerve in cats: relationship between endbulbs of Held and spherical bushy cells. J Comp Neurol 305:35–48

    CAS  PubMed  Google Scholar 

  • Ryugo DK, Wu MM, Pongstaporn T (1996) Activity-related features of synapse morphology: a study of endbulbs of Held. J Comp Neurol 365:141–158

    CAS  PubMed  Google Scholar 

  • Ryugo DK, Pongstaporn T, Huchton DM, Niparko JK (1997) Ultrastructural analysis of primary endings in deaf white cats: morphologic alterations in endbulbs of Held. J Comp Neurol 385:230–244

    CAS  PubMed  Google Scholar 

  • Ryugo DK, Rosenbaum BT, Kim PJ, Niparko JK, Saada AA (1998) Single unit recordings in the auditory nerve of congenitally deaf white cats: morphological correlates in the cochlea and cochlear nucleus. J Comp Neurol 397:532–548

    CAS  PubMed  Google Scholar 

  • Ryugo DK, Kretzmer EA, Niparko JK (2005) Restoration of auditory nerve synapses in cats by cochlear implants. Science 310:1490–1492

    CAS  PubMed  Google Scholar 

  • Ryugo DK, Montey KL, Wright AL, Bennett ML, Pongstaporn T (2006) Postnatal development of a large auditory nerve terminal: the endbulb of Held in cats. Hear Res 216–217:100–115

    PubMed  Google Scholar 

  • Ryugo DK, Baker CA, Montey KL, Chang LY, Coco A, Fallon JB, Shepherd RK (2010) Synaptic plasticity after chemical deafening and electrical stimulation of the auditory nerve in cats. J Comp Neurol 518:1046–1063

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saada AA, Niparko JK, Ryugo DK (1996) Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Res 736:315–328

    CAS  PubMed  Google Scholar 

  • Scheibe A (1895) Bildungsanomalien im häutigen Labyrinth bei Taubstummheit. Z Ohrenheilkd 27:95–99

    Google Scholar 

  • Schmiedt RA, Mills JH, Boettcher FA (1996) Age-related loss of activity of auditory-nerve fibers. J Neurophysiol 76:2799–2803

    CAS  PubMed  Google Scholar 

  • Schwartz IR, Higa JF (1982) Correlated studies of the ear and brainstem in the deaf white cat: changes in the spiral ganglion and the medial superior olivary nucleus. Acta Otolaryngol 93:9–18

    CAS  PubMed  Google Scholar 

  • Seitanidou T, Triller A, Korn H (1988) Distribution of glycine receptors on the membrane of a central neuron: an immunoelectron microscopy study. J Neurosci 8:4319–4333

    CAS  PubMed  Google Scholar 

  • Sento S, Ryugo DK (1989) Endbulbs of Held and spherical bushy cells in cats: morphological correlates with physiological properties. J Comp Neurol 280:553–562

    CAS  PubMed  Google Scholar 

  • Shatz CJ, Stryker MP (1978) Ocular dominance in layer IV of the cat’s visual cortex and the effects of monocular deprivation. J Physiol (Lond) 281:267–283

    CAS  Google Scholar 

  • Sie KC, Rubel EW (1992) Rapid changes in protein synthesis and cell size in the cochlear nucleus following eighth nerve activity blockade or cochlea ablation. J Comp Neurol 320:501–508

    CAS  PubMed  Google Scholar 

  • Stakhovskaya O, Hradek GT, Snyder RL, Leake PA (2008) Effects of age at onset of deafness and electrical stimulation on the developing cochlear nucleus in cats. Hear Res 243:69–77

    PubMed Central  PubMed  Google Scholar 

  • Steward O, Rubel EW (1985)Afferent influences on brain stem auditory nuclei of the chicken: cessation of amino acid incorporation as an antecedent to age-dependent transneuronal degeneration. J Comp Neurol 231:3–395

  • Suga F, Hattler KW (1970) Physiological and histopathological correlates of hereditary deafness in animals. Laryngoscope 80:81–104

    CAS  PubMed  Google Scholar 

  • Suga N (2011) Tuning shifts of the auditory system by corticocortical and corticofugal projections and conditioning. Neurosci Biobehav Rev 36:969–88

    PubMed Central  PubMed  Google Scholar 

  • Suga N, Xiao Z, Ma X, Ji W (2002) Plasticity and corticofugal modulation for hearing in adult animals. Neuron 36:9–18

    CAS  PubMed  Google Scholar 

  • Szpir MR, Sento S, Ryugo DK (1990) The central progections of the cochlear nerve fibers in the alligator lizard. J Comp Neurol 295:530–547

    CAS  PubMed  Google Scholar 

  • Taflia A, Holcman D (2007) Dwell time of a Brownian molecule in a microdomain with traps and a small hole on the boundary. J Chem Phys 126:234107

    PubMed  Google Scholar 

  • Tirko NN, Ryugo DK (2012) Synaptic plasticity in the medial superior olive of hearing, deaf, and cochlear-implanted cats. J Comp Neurol 520:2202–2217

    PubMed Central  PubMed  Google Scholar 

  • Trune DR (1982a) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus. I. Number, size, and density of its neurons. J Comp Neurol 209:409–424

    CAS  PubMed  Google Scholar 

  • Trune DR (1982b) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus. II. Dendritic morphometry of its neurons. J Comp Neurol 209:425–434

    CAS  PubMed  Google Scholar 

  • Trussell LO, Fischbach GD (1989) Glutamate receptor densitization and its role in synaptic transmission. Neuron 3:209–218

    CAS  PubMed  Google Scholar 

  • Tsuji J, Liberman MC (1997) Intracellular labeling of auditory nerve fibers in guinea pig: central and peripheral projections. J Comp Neurol 381:188–202

    CAS  PubMed  Google Scholar 

  • Tyler RS, Summerfield AQ (1996) Cochlear implantation: relationships with research on auditory deprivation and acclimatization. Ear Hear 17:38S–50S

    CAS  PubMed  Google Scholar 

  • Uchizono K (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207:642–643

    CAS  PubMed  Google Scholar 

  • Vale C, Sanes DH (2002) The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus. Eur J Neurosci 16:2394–2404

    PubMed  Google Scholar 

  • Van der Loos H, Woolsey TA (1973) Somatosensory cortex: structural alterations following early injury to sense organs. Science 179:395–398

    PubMed  Google Scholar 

  • Vollmer M, Snyder RL, Leake PA, Beitel RE, Moore CM, Rebscher SJ (1999) Temporal properties of chronic cochlear electrical stimulation determine temporal resolution of neurons in cat inferior colliculus. J Neurophysiol 82:2883–2902

    CAS  PubMed  Google Scholar 

  • Vollmer M, Leake PA, Beitel RE, Rebscher SJ, Snyder RL (2005) Degradation of temporal resolution in the auditory midbrain after prolonged deafness is reversed by electrical stimulation of the cochlea. J Neurophysiol 93:3339–3355

    PubMed  Google Scholar 

  • Waltzman SB, Cohen NL, Shapiro WH (1993) The benefits of cochlear implantation in the geriatric population. Otolaryngol Head Neck Surg 108:329–333

    CAS  PubMed  Google Scholar 

  • Wang Y, Manis PB (2005) Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. J Neurophysiol 94:1814–1824

    PubMed Central  PubMed  Google Scholar 

  • Wang H, Yin G, Rogers K, Miralles C, De Blas AL, Rubio ME (2011) Monaural conductive hearing loss alters the expression of the GluA3 AMPA and glycine receptor alpha1 subunits in bushy and fusiform cells of the cochlear nucleus. Neuroscience 199:438–451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinberger NM (1995) Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annu Rev Neurosci 18:129–158

    CAS  PubMed Central  PubMed  Google Scholar 

  • West CD, Harrison JM (1973) Transneuronal cell atrophy in the congenitally deaf white cat. J Comp Neurol 151:377–398

    CAS  PubMed  Google Scholar 

  • Westenbroek RE, Westrum LE, Hendrickson AE, Wu JY (1988) Ultrastructure of synaptic remodeling in piriform cortex of adult rats after neonatal olfactory bulb removal: an immunocytochemical study. J Comp Neurol 274:334–346

    CAS  PubMed  Google Scholar 

  • Whiting B, Moiseff A, Rubio ME (2009) Cochlear nucleus neurons redistribute synaptic AMPA and glycine receptors in response to monaural conductive hearing loss. Neuroscience 163:1264–1276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1963) Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. J Neurophysiol 26:978–993

    CAS  PubMed  Google Scholar 

  • Wollmuth LP, Traynelis SF (2009) Neuroscience: excitatory view of a receptor. Nature 462:729-731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yasui T, Fujisawa S, Tsukamoto M, Matsuki N, Ikegaya Y (2005) Dynamic synapses as archives of synaptic history: state-dependent redistribution of synaptic efficacy in the rat hippocampal CA1. J Physiol (Lond) 566:143–160

    CAS  Google Scholar 

  • Zhang LI, Bao S, Merzenich MM (2001) Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat Neurosci 4:1123–1130

  • Zhou X, Nagarajan N, Mossop BJ, Merzenich MM (2008) Influences of un-modulated acoustic inputs on functional maturation and critical-period plasticity of the primary auditory cortex. Neuroscience 154:390–396

Download references

Acknowledgments

Thanks to Christa Baker, Hugh Cahill, Iris Chen, Catherine Connelly, Donna Fekete, Charles-Andre Haenggeli, David Huchton, Erika Kretzmer, Charles Limb, Noah Meltzer, Karen Montey, Michael Muniak, John Niparko, Jahn O’Neil, Tan Pongstaporn, Elizabeth Redd, Liana Rose, Eric Rouiller, Ahmed Saada, Mary E. Schroeder, Seishiro Sento, Natasha Tirko and Melissa Wu for their contributions to the data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ryugo.

Additional information

This work was supported by grants from the NIH/NIDCD, Advanced Bionics Corporation, the NHMRC of Australia and the Fairfax Foundation and by gifts from Christian Vignes, Alan and Irene Moss, Carol-Ann Kirkland, Haydn and Sue Daw and the Macquarie Development Group.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryugo, D. Auditory neuroplasticity, hearing loss and cochlear implants. Cell Tissue Res 361, 251–269 (2015). https://doi.org/10.1007/s00441-014-2004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2004-8

Keywords

Navigation