Skip to main content

Advertisement

Log in

Characterisation of secretory calcium-binding phosphoprotein-proline-glutamine-rich 1: a novel basal lamina component expressed at cell-tooth interfaces

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Functional genomic screening of the rat enamel organ (EO) has led to the identification of a number of secreted proteins expressed during the maturation stage of amelogenesis, including amelotin (AMTN) and odontogenic ameloblast-associated (ODAM). In this study, we characterise the gene, protein and pattern of expression of a related protein called secretory calcium-binding phosphoprotein-proline-glutamine-rich 1 (SCPPPQ1). The Scpppq1 gene resides within the secretory calcium-binding phosphoprotein (Scpp) cluster. SCPPPQ1 is a highly conserved, 75-residue, secreted protein rich in proline, leucine, glutamine and phenylalanine. In silico data mining has revealed no correlation to any known sequences. Northern blotting of various rat tissues suggests that the expression of Scpppq1 is restricted to tooth and associated tissues. Immunohistochemical analyses show that the protein is expressed during the late maturation stage of amelogenesis and in the junctional epithelium where it localises to an atypical basal lamina at the cell-tooth interface. This discrete localisation suggests that SCPPPQ1, together with AMTN and ODAM, participates in structuring the basal lamina and in mediating attachment of epithelia cells to mineralised tooth surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adair-Kirk TL, Griffin GL, Meyer MJ, Kelley DG, Miner JH, Keene DR, Marinkovich MP, Ruppert JM, Uitto J, Senior RM (2012) Keratinocyte-targeted expression of human laminin gamma2 rescues skin blistering and early lethality of laminin gamma2 deficient mice. PLoS ONE 7:e45546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bendayan M (1995) Colloidal gold post-embedding immunocytochemistry. Prog Histochem Cytochem 29:1–159

    Article  CAS  PubMed  Google Scholar 

  • Bendayan M, Zollinger M (1983) Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J Histochem Cytochem 31:101–109

    Article  CAS  PubMed  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  CAS  PubMed  Google Scholar 

  • Bosshardt DD, Nanci A (1997) Immunodetection of enamel- and cementum-related (bone) proteins at the enamel-free area and cervical portion of the tooth in rat molars. J Bone Miner Res 12:367–379

    Article  CAS  PubMed  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci U S A 81:1991–1995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dos Santos NJ, Wazen RM, Kuroda S, Francis ZS, Moffatt P, Nanci A (2012) Odontogenic ameloblast-associated and amelotin are novel basal lamina components. Histochem Cell Biol 137:329–338

    Article  Google Scholar 

  • Erickson AC, Couchman JR (2000) Still more complexity in mammalian basement membranes. J Histochem Cytochem 48:1291–1306

    Article  CAS  PubMed  Google Scholar 

  • Holcroft J, Ganss B (2011) Identification of amelotin- and ODAM-interacting enamel matrix proteins using the yeast two-hybrid system. Eur J Oral Sci 119 (Suppl 1):301–306

    Article  PubMed  Google Scholar 

  • Hormia M, Owaribe K, Virtanen I (2001) The dento-epithelial junction: cell adhesion by type I hemidesmosomes in the absence of a true basal lamina. J Periodontol 72:788–797

    Article  CAS  PubMed  Google Scholar 

  • Huq NL, Cross KJ, Ung M, Reynolds EC (2005) A review of protein structure and gene organisation for proteins associated with mineralised tissue and calcium phosphate stabilisation encoded on human chromosome 4. Arch Oral Biol 50:599–609

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki K (2009) The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues. Dev Genes Evol 219:147–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawasaki K (2011) The SCPP gene family and the complexity of hard tissues in vertebrates. Cells Tissues Organs 194:108–112

    Article  PubMed  Google Scholar 

  • Kawasaki K, Weiss KM (2003) Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster. Proc Natl Acad Sci U S A 100:4060–4065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawasaki K, Weiss KM (2006) Evolutionary genetics of vertebrate tissue mineralization: the origin and evolution of the secretory calcium-binding phosphoprotein family. J Exp Zool B Mol Dev Evol 306:295–316

    Article  PubMed  Google Scholar 

  • Kawasaki K, Weiss KM (2008) SCPP gene evolution and the dental mineralization continuum. J Dent Res 87:520–531

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki K, Suzuki T, Weiss KM (2004) Genetic basis for the evolution of vertebrate mineralized tissue. Proc Natl Acad Sci U S A 101:11356–11361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawasaki K, Buchanan AV, Weiss KM (2007) Gene duplication and the evolution of vertebrate skeletal mineralization. Cells Tissues Organs 186:7–24

    Article  PubMed  Google Scholar 

  • Kawasaki K, Buchanan AV, Weiss KM (2009) Biomineralization in humans: making the hard choices in life. Annu Rev Genet 43:119–142

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki K, Lafont AG, Sire JY (2011) The evolution of milk casein genes from tooth genes before the origin of mammals. Mol Biol Evol 28:2053–2061

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  • Kim ST, Adair-Kirk TL, Senior RM, Miner JH (2012) Functional consequences of cell type-restricted expression of laminin alpha5 in mouse placental labyrinth and kidney glomerular capillaries. PLoS ONE 7:e41348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McMillan JR, Akiyama M, Shimizu H (2003) Epidermal basement membrane zone components: ultrastructural distribution and molecular interactions. J Dermatol Sci 31:169–177

    Article  CAS  PubMed  Google Scholar 

  • Moffatt P, Smith CE, Sooknanan R, St-Arnaud R, Nanci A (2006a) Identification of secreted and membrane proteins in the rat incisor enamel organ using a signal-trap screening approach. Eur J Oral Sci 114 (Suppl 1):139–146

    Article  CAS  PubMed  Google Scholar 

  • Moffatt P, Smith CE, St-Arnaud R, Simmons D, Wright JT, Nanci A (2006b) Cloning of rat amelotin and localization of the protein to the basal lamina of maturation stage ameloblasts and junctional epithelium. Biochem J 399:37–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moffatt P, Smith CE, St Arnaud R, Nanci A (2008) Characterization of Apin, a secreted protein highly expressed in tooth-associated epithelia. J Cell Biochem 103:941–956

    Article  CAS  PubMed  Google Scholar 

  • Neiss WF (1984) Electron staining of the cell surface coat by osmium-low ferrocyanide. Histochemistry 80:231–242

    Article  CAS  PubMed  Google Scholar 

  • Nishio C, Wazen R, Kuroda S, Moffatt P, Nanci A (2010) Expression pattern of odontogenic ameloblast-associated and amelotin during formation and regeneration of the junctional epithelium. Eur Cell Mater 20:393–402

    CAS  PubMed  Google Scholar 

  • Nishio C, Wazen R, Moffatt P, Nanci A (2013) Expression of odontogenic ameloblast-associated and amelotin proteins in the junctional epithelium. Periodontol 2000 63:59–66

    Article  PubMed  Google Scholar 

  • Petersen TN, Brunak S, Heijne G von, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

  • Sawada T, Yamazaki T, Shibayama K, Kumazawa K, Yamaguchi Y, Ohshima M (2014) Expression and localization of laminin 5, laminin 10, type IV collagen, and amelotin in adult murine gingiva. J Mol Histol 45:293–302

    Article  CAS  PubMed  Google Scholar 

  • Schmitz JE, Teepe JD, Hu Y, Smith CE, Fajardo RJ, Chun YH (2014) Estimating mineral changes in enamel formation by ashing/BSE and MicroCT. J Dent Res 93:256–262

    Article  CAS  PubMed  Google Scholar 

  • Smith CE, Nanci A (1989) A method for sampling the stages of amelogenesis on mandibular rat incisors using the molars as a reference for dissection. Anat Rec 225:257–266

    Article  CAS  PubMed  Google Scholar 

  • Smith CE, Nanci A (1996) The protein dynamics of amelogenesis. Anat Rec 245:186–207

    Article  CAS  PubMed  Google Scholar 

  • Yurchenco PD, Amenta PS, Patton BL (2004) Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol 22:521–538

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We extend our thanks to Mrs. Cynthia Török and Katia Julissa Ponce for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Nanci.

Additional information

Pierre Moffatt and Rima M. Wazen contributed equally to this work

This study was supported by the Canadian Institutes of Health Research, Network for Oral and Bone Health Research and Shriners of North America. Juliana Dos Santos Neves was supported by CAPES, Government of Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moffatt, P., Wazen, R.M., Dos Santos Neves, J. et al. Characterisation of secretory calcium-binding phosphoprotein-proline-glutamine-rich 1: a novel basal lamina component expressed at cell-tooth interfaces. Cell Tissue Res 358, 843–855 (2014). https://doi.org/10.1007/s00441-014-1989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1989-3

Keywords

Navigation