Abstract
Histological descriptions of morphogenesis in human fetal brain and in malformations and tumours can now be supplemented by the timing and sequence of the maturation of individual neurons. In human neuropathology, this is principally achieved by immunocytochemical reactivities used as maturational markers of neuronal properties denoted by molecules and cell products. Cytological markers can appear early and then regress, often being replaced by more mature molecules, or might not exhibit the onset of immunoreactivity until a certain stage of neuronal differentiation is achieved, some early, others intermediate and some late during the maturational process. Inter-specific differences occur in some structures of the brain. The classification of markers of neuronal maturation can be based, in addition to those mentioned above, on several criteria: cytological localisation, water solubility, biochemical nature of the antigen, specificity and various technical factors. The most useful immunocytochemical markers of neuronal maturation in human neuropathology are NeuN, synaptophysin, calretinin and other calcium-binding molecules, various microtubule-associated proteins and chromogranins. Non-antibody histochemical stains that denote maturational processes include luxol fast blue for myelination, acridine orange fluorochrome for nucleic acids, mitochondrial respiratory chain enzymes and argentophilic impregnations. Neural crest derivatives of the peripheral nervous system, including chromaffin and neuroendocrine cells, have special features that are shared and others that differ greatly between lineages. Other techniques used in human diagnostic neuropathology, particularly as applied to tumours, include chromosomal and genetic analyses, the mTOR signalling pathway, BRAF V600E and other tumour-suppressor gene products, transcription products of developmental genes and the proliferation index of the tumour cells and of mitotic neuroepithelial cells.
Similar content being viewed by others
References
Arda HE, Benitez CM, Kim SK (2013) Gene regulatory networks governing pancreas development. Dev Cell 25:5–13
Aronica E, Crino PB (2014) Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 11:251–268. doi:10.1007/s13111-013-0251-0
Auclair F, Bélanger M-C, Marachand R (1993) Ontogenetic study of early brain stem projections to the spinal cord in the rat. Brain Res Bull 30:281–289
Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308
Baizer JS (2014) Unique features of the human brainstem and cerebellum. Front Hum Neurosci 8:202. doi:10.3389/fnhum.2014.00202
Baizer JS, Broussard DM (2010) Expression of calcium-binding proteins and nNOS in the human vestibular and precerebellar brainstem. J Comp Neurol 518:872–895
Banks P, Helle K (1967) The release of protein from the stimulated adrenal medulla. Biochem J 97:40–41C
Bledsoe JR, Kamionek M, Mino-Kenudson M (2014) BRAF V600E immunohistochemistry is reliable in primary and metastatic colorectal carcinoma regardless of treatment status and shows high intratumoreal homogeneity. Am J Surg Pathol (in press)
Brat DJ, Gearing M, Goldthwaite PT, Wainer BH, Burger PC (2001) Tau-associated neuropathology in ganglion cell tumours increases with patient age but appears unrelated to ApoE genotype. Neuropathol Appl Neurobiol 27:197–205
Brown AM, Evans RD, Black JB, Ransom BR (2012) Schwann cell glycogen selectively supports myelinated axon function. Ann Neurol 72:406–418
Brown NA, Rolland DC, McHugh JB, Weigelin HC, Zhao LL, Lim MS, Elenitoba-Johnson KS, Betz BL (2014) Activating FGFR2-RAS-BRAF mutations in ameloblastoma. Clin Cancer Res (in press)
Cannon JR, Greenamyre JT (2009) NeuN is not a reliable marker of dopamine neurons in rat substantia nigra. Neurosci Lett 464:14–17
Carlin K (2013) The nervous system and pH. Open J Int Med 3:126–128
Chappé C, Padovani L, Scavarda D, Forest F, Nanni-Metellus I, Loundou A, Mercurio S, Fina F, Lena G, Colin C, Figarella-Branger D (2013) Dysembryoplastic neuroepithelial tumors share with pleomorphic xnthoastrocytomas and gangliogliomas BRAFV600E mutation and expression. Brain Pathol 23:574–583
Crawford JR, MacDonald TJ, Packer RJ (2007) Medulloblastoma in childhood: new biological advances. Lancet Neurol 6:1073–1085
Crino PB (2005) Molecular pathogenesis of focal cortical dysplasia and hemimegalencephaly. J Child Neurol 20:330–336
Crino PB (2011) mTOR: a pathogenic signaling pathway in developmental brain malformations. Trends Mol Med 17:734–742
Darnell RB (2013) RNA protein interaction in neurons. Annu Rev Neurosci 36:243–270
Dent MA, Segura-Anaya E, Alva-Medina J, Aranda-Anzaldo A (2010) NeuN/Fox-3 is an intrinsic component of the neuronal nuclear matrix. FEBS Lett 584:767–2771
Drews G, Krippeit-Drews P, Düfer M (2010) Electrophysiology of islet cells. Adv Exp Med Biol 654:115–163
Dvorak K, Aggeler B, Palting J, McKelvie P, Ruszkiewicz A, Waring P (2014) Immunohistochemistry with the anti-BRAF V600E (VE1) antibody: impact of pre-analystical conditions and concordance with DNA sequencing in colorectal and papillary thyroid carcinoma. Pathology (in press)
Erickson JD, Lloyd R, Trojanowski JQ, Iacangelo A, Eiden E (1992) Sites of synthesis of chromogranins A and B in the human brain. Neuropeptides 21:239–244
Ernsberger U (2008) The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons. Cell Tissue Res 333:353–371
Ernsberger U (2009) Role of neurotrophic signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 336:349–384
Ernsberger U (2012) Regulation of gene expression during early neuronal differentiation: evidence for patterns conserved across neuron populations and vertebrate classes. Cell Tissue Res 348:1–27
Esmaeili M, Hamana BC, Navis AC, Horssen R van, Bathen TF, Gribbestad IS, Leenders WP, Heerschap A (2014) IDH1 R132H mutation generates a distinct phospholipid metabolite profile in gliomas. Cancer Res (in press)
Filiano JJ, Kinney HC (1992) Arcuate nucleus hypoplasias in the sudden infant death syndrome. J Neuropathol Exp Neurol 5:394–403
Fisher KE, Neill SG, Ehsani L, Caltharp SA, Siddiqui MT, Cohen C (2014) Immunohistochemical investigation of BRAF p. V600E mutations in thyroid carcinoma using 2 separate BRAF antibodies. Appl Immunohistochem Mol Morphol (in press)
Frassoni C, Arcelli P, Selvaggio M, Spreafico R (1998) Calretinin immunoreactivity in the developing thalamus of the rat: a marker of early generated thalamic cells. Neuroscience 83:1203–1214
Fridyland LE, Jacobson DA, Phillipson LH (2013) Ion channels and regulation of insulin secretion in human β-cells: a computational systems analysis. Islets 5:1–15
Geramizadeh B, Hayati K, Rahsaz M, Hosseiini SV (2009) Assessing the interstitial cells of Cajal, cells of enteric nervous system and neurotransmitters in slow transit constipation, using immunohistochemistry for CD117, PGP9.5 and serotonin. Hepatogastroenterology 56:1670–1674
Ghandour MS, Langley OK, Keller A (1981) A comparative immunohistological study of cerebellar enolases. Double labelling technique and immunoelectronmicroscopy. Exp Brain Res 41:2712–2719
Gibson CJ, Muñoz DG (1993) Chromogranin A inhibits retinal dopamine release. Brain Res 622:303–306
Gilles FH (1976) Myelination in the human brain. Brain Pathol 7:244–248
Gincel D, Shoshan-Barmatz V (2003) The synaptic vesicle protein synapatophysin: purification and characterization of its channel activity. Biophys J 83:3223–3229
Golgi C (1875) Sulli fina struttura dei bulbi olfattorii. Rivista Sperimentale di Freniatria e di Medicina Legale 1:66–78
Gotzos V, Schwaller B, Hetzel N, Bustos-Castillo M, Celio MR (1992) Expression of the calcium-binding protein in WiDr cells and its correlation to their cell cycle. Exp Cell Res 202:292–302
Gratzl M (1987) Distribution of the Ca++ binding protein chromogranin A in the pancreatic islets. Exp Brain Res 16:130–133
Hall BK (2009) The neural crest and neural crest cells in vertebrate development and evolution. Springer, New York
Hamprecht B, Verleysdonk S, Wiesinger H (2005) Enzymes of carbohydrate and energy metabolism. In: Kettenmann H, Ransom BR (eds) Neuroglia, 2nd edn. Oxford University Press, Oxford, pp 202–215
Hamre KM, Cassell MD, West JR (1989) The development of laminar staining for neuron-specific enolase in the rat somatosensory cortex. Dev Brain Res 46:213–220
Hevner RF (2000) Development of connections in the human visual system during fetal mid-gestation: a DiI tracing study. J Neuropathol Exp Neurol 59:385–392
Hewer E, Beck J, Murek M, Kappeler A, Vassella E, Vajtai I (2014) Polymorphous oligodendroglioma of Zülch revisited: a genetically heterogeneous group of anaplastic gliomas including tumors of bona fide oligodendroglial differentiation. Neuropathology. doi:10.1111/neup.12097 (in press)
Honig MG, Hume RI (1989) DiI and DiO versatile fluorescente dyes for neuronal labelling and pathway tracing. Trends Neurosci 12:333–341
Huber K (2014) Segregation of neuronal and neuroendocrine differentiation in the sympathoadrenal lineage. Cell Tissue Res (this issue)
Ito T, Udaka N, Ikeda M, Yazawa T, Kageyama R, Kitamura H (2001) Significance of proneural basic helix-loop-helix transcription factors in neuroendocrine differentiation of fetal lung epithelial cells and lung carcinoma cells. Histol Histopathol 16:335–343
Jahn R, Schiebler W, Ouimet C, Greengard P (1985) A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A 82:4137–4141
Kameda Y, Saitoh T, Nemoto N, Katoh T, Iseki S (2012) Hes1 is required for the development of the superior cervical ganglion of sympathetic trunk and the carotid body. Dev Dyn 241:1289–1300
Katsetos CD, Frankfurter A, Christakos S, Mancall EL, Vlachos IN, Urich H (1993) Differential localization of class III β-tubulin isotype and calbindin D28k defines distinct neuronal types in the developing human cerebellar cortex. J Neuropathol Exp Neurol 52:655–666
Kim KK, Adelstein RS, Kawamoto S (2009) Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem 284:31052–31061
Klüver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12:400–403
Kumar SS, Buckmaster PS (2007) Neuron-specific nuclear antigen NeuN is not detectable in gerbil substantia nigra pars reticulata. Brain Res 1142:54–60
Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A, Funari V, Russ C, Gabriel SB, Mathern GW, Gleeson JG (2012) De novo somatic mutations in components of the P13K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44:941–945
Lin AL, Liu J, Evans J, Leuthardt EC, Rich KM, Dacey RG, Dowling JL, Kim AH, Zipfel GC, Grubb RL, Huang J, Robinson CG, Simpson JR, Linette GP, Chicoine MR, Tran DD (2014) Codeletions at 1p and 19q predict a lower risk of pseudoprogression in oligodendrogliomas and mixed oligoastrocytomas. Neuro Oncol 16:123–130
Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, Turner J, Cannons JL, Bick D, Blakemore L, Blumhorst C, Brockmann K, Calder P, Cherman N, Deardorff MA, Everman DB, Golas G, Greenstein RM, Kato BM, Keppler-Noreuil KM, Kuznetsov SA, Miyamoto RT, Newman K, Ng D, O'Brien K, Rothenberg S, Schwartzentruber DJ, Singhal V, Tirabosco R, Upton J, Wientroub S, Zackai EH, Hoag K, Whitewood-Neal T, Robey PG, Schwartzberg PL, Darling TN, Tosi LL, Mullikin JC, Biesecker LG (2011) A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med 365:611–619
Linstedt AD, Kelly RB (1991) Endocytosis of the synapatic vesicle protein, synaptophysin, requires the COOH-terminal tail. J Physiol (Paris) 85:90–96
Lloyd RV, Cano M, Rosa P, Hille A, Huttner WB (1988) Distribution of chromogranin-A and secretogranin I (chromogranin-B) in neuroendocrine cells and tumors. Am J Pathol 130:296–304
Lummus SC, Aisner DL, Sams SB, Foreman NK, Lillehei KO, Kleinschmidt-DeMasters BK (2014) Massive dissemination from spinal cord gangliogliomas netaive for BRAF V600E. Report of two rare adult cases. Am J Clin Pathol 142:254–260
Mackenzie I, Neumann M, Cairns NJ, Muñoz DG, Isaacs AM (2012) Novel types of frontotemporal lobar degeneration: beyond tau and TDP-43. J Mol Neurosci 122:87–89
Marangos PJ, Schemechel DE, Parma AM, Goodwin FK (1980) Developmental profile of neuron-specific (NSE) and non-neuronal (NNE) enolase. Brain Res 190:185–193
Marín-Padilla M (2011) The human brain. Prenatal development and structure. Springer, Heidelberg
Massaro AN, Baumgart S, McCarter R, Nelson K, Glass P (2014) Biomarkers S100B and neuron-specific enolase predict outcome in hypothermia-treated encephalopathic newborns. Pediatr Crit Care Med (in press)
Matturi L, Biondo B, Mercurio P (2000) Severe hypoplasia of medullary arcuate nucleus: quantitative analysis in sudden infant death syndrome. Acta Neuropathol 99:371–375
Maxeiner S, Glassmann A, Kao HT, Schilling K (2014) The molecular basis of the specificity and cross-reactivity of the NeuN epitope of the neuron-specific splicing regulator, Rbfox3. Histochem Cell Biol 141:43–55
Mulligan LM, Mole SE (1993) Strategies for isolating genes in hereditary and sporadic tumors. In: Levine AJ, Schmidek HH (eds) Molecular genetics of nervous system tumors. Wiley-Liss, New York, pp 195–208
Muñoz DG (1990) Monodendritic neurons: a cell type in the human cerebellar cortex identified by chromogranin A-like immunoreactivity. Brain Res 528:336–338
Muñoz DG, Kobylinski L, Henry DD, George DH (1990) Chromogranin A-like immunoreactivity in the human brain: distribution in bulbar medulla and cerebral cortex. Neuroscience 34:533–543
Neuman B, Wiedermann CJ, Fischer-Colbrie R, Schober M, Sperk G, Winkler H (1984) Biochemical and functional properties of large and small dense-core vesicles in sympathetic nerves of rat and ox vas deferens. Neuroscience 13:921–931
Nishimura M, Takashima S, Takeshita K, Tanaka J (1985) Developmental changes of neuron-specific enolase in human brain: an immunohistochemical study. Brain Dev 7:1–6
Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel
Pathak D, Berthet A, Nakamura K (2013) Energy failure: does it contribute to neurodegeneration? Ann Neurol 74:506–516
Pearlstein MV, Zedek DC, Ollila DW, Treece A, Gulley ML, Groben PA, Thomas NE (2014) Validation of the VE1 immunostain for the BRAF V600E mutation in melanoma. J Cutan Pathol. doi:10.1111/cup.12364
Pellerin L, Therianos S, Magistretti PJ (2001) The metabolic functions of glial cells. In: Jessen KR, Richardson WM (eds) Glial cell development, 2nd edn. Oxford University Press, Oxford, pp 91–107
Pi H-J, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503:521–524
Poduri A, Evrony GD, Cai X, Elhosary PC, Beroukhim R, Lehtinen MK, Hils LB, Heinzen EL, Hill A, Hill RS, Barry BJ, Bourgeois BF, Riviello JJ, Barkovich AJ, Black PM, Ligon KL, Walsh CA (2012) Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74:41–48
Poduri A, Evrony GD, Cai X, Walsh CA (2013) Somatic mutation, genomic variation, and neurologic disease. Science 341:1237758. 10.1126/science.1237758
Prabowo A, Anink J, Lammens M, Nellist M, Ouweland AMW van den, Adle-Biassette H, Sarnat HB, Flores-Sarnat L, Crino PB, Aronica E (2013) Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol 23:45–59
Prabowo AS, Iyer AM, Veersma TJ, Anink JJ, Shouten-van Meeteren AY, Spliet WG, Rijen PC van, Ferrier CH, Thom M, Aronica E (2014) Expression of neurodegenerative disease-related proteins and caspase-3 in glioneuronal tumours. Neuropathol Appl Neurobiol. doi: 10.1111/nan.12143
Ramón y Cajal S (1881) Sur la structure de l’écorce cérébrale de quelques mammifères. La Céllule 7:125–176
Ramón y Cajal S (1909–1911) Histologie du système nerveux de l’homme et des vértébrés. Maloine, Paris. Reprinted in English translation, Histology of the Nervous System of Man and Vertebrates (in 2 volumes). Oxford University Press, Oxford (1995)
Rasmussen CD, Means AR (1992) Calmodulin, cell growth and gene expression. Trends Neurosci 46:433–438
Reiffen FU, Gratzl M (1986) Chromogranins, widespread in endocrine and nervous tissues, bind Ca++. FEBS Lett 195:327–330
Reyes-Botero G, Dehais C, Idbaih A, Martin-Duverneuil N, Lahutte M, Carpentier C, Letouzé E, Chinot O, Loiseau H, Honnorat J, Ramírez C, Moyal E, Figarella-Branger D, Ducray F, POLA network (2014) Contrast enhancement in 1p/19q-codeleted anaplastic oligodendrogliomas is associated with 9p loss, genomic instablility, and agniogenic gene expression. Neuro Oncol 16:662–670
Rodríguez FJ, Tihan T, Lin D, McDonald W, Nigro J, Feueerstein B, Jackson S, Cohen K, Burger PC (2014) Clinicopathological featrure of pediatric oligodendrogliomas: a series of 50 patients. Am J Surg Pathol (in press)
Rorke LB, Riggs HE (1969) Myelination in the brain of the newborn. Lippincott, Philadelphia
Rorsman P, Braun M (2013) Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol 75:155–179
Royds JA, Parsons MA, Taylor CB, Timperley WR (1982) Enolase isoenzyme distribution in the human brain and its tumors. J Pathol 137:37–49
Sainath R, Gallo G (2014) Cytoskeletal and signaling mechanisms of neurite formation. Cell Tissue Res (this issue)
Sakuma S, Halliday WC, Nomura R, Ochi A, Otsuba H (2014) Increased populations of oligodendrocyte-like cells in pediatric intractable epilepsy. Neurosci Lett 566:188–193
Sarnat HB (1985) L’acridine-orange: un fluorochrome des acides nucléiques pour l’étude des cellules musculaires et nerveuses. Rev Neurol (Paris) 141:120–127
Sarnat HB (1989) Répartition de l’ARN au cours de la migration neuronale dans les cerveaux normaux et dysplastiques en développement chez l’homme: étude à l’acridine-orange. Rev Neurol (Paris) 145:127–133
Sarnat HB (1998a) Histochemistry and immunocytochemistry of the developing ependyma and choroid plexus. Microsc Res Tech 41:14–28
Sarnat HB (1998b) Vimentin immunohistochemistry in human fetal brain: methods of standard incubation versus thermal intensification achieve different objectives. Pediatr Dev Pathol 1:222–229
Sarnat HB (2004) Regional ependymal upregulation of vimentin in Chiari II malformation, aqueductal stenosis and hydromyelia. Pediatr Dev Pathol 7:48–60
Sarnat HB (2013) Clinical neuropathology practice guide 5–2013: markers of neuronal maturation. Clin Neuropathol 32:340–369
Sarnat HB, Born DE (1999) Synaptophysin immunocytochemistry with thermal intensification: a marker of terminal axonal maturation in the human fetal nervous system. Brain Dev 21:41–50
Sarnat HB, Flores-Sarnat L (2009) α-B-crystallin: a tissue marker of epileptic foci in paediatric resections. Can J Neurol Sci 36:566–574
Sarnat HB, Flores-Sarnat L (2013) Precocious and delayed neocortical synaptogenesis in fœtal holoprosencephaly. Clin Neuropathol 32:255–268
Sarnat HB, Flores-Sarnat L (2014) Infantile tauopathies: hemimegalencphaly; tuberous sclerosis complex; focal cortical dysplasia 2; ganglioglioma. Brain Dev (in press)
Sarnat HB, Nochlin D, Born DE (1998) Neuronal nuclear antigen (NeuN) as a marker of neuronal maturation in the early human fetal nervous system. Brain Dev 20:88–94
Sarnat HB, Flores-Sarnat L, Trevenen CL (2010) Synaptophysin immunoreactivity in the human hippocampus and neocortex from 6 to 41 weeks of gestation. J Neuropathol Exp Neurol 69:234–245
Sarnat HB, Flores-Sarnat L, Hader W, Bello-Espinosa L (2011) Mitochondrial “hypermetabolic” neurons in paediatric epileptic foci. Can J Neurol Sci 38:909–917
Sarnat HB, Flores-Sarnat L, Crino PB, Hader W, Bello-Espinosa L (2012) Hemimegalencephaly: fetal tauopathy, mTOR activation and neuronal lipidosis. Folia Neuropathol 50:330–345
Sarnat HB, Auer RN, Flores-Sarnat L (2013a) Synaptogenesis in the fetal corpus striatum, globus pallidus and substantia nigra. Correlations with striosomes of Graybiel and dyskinesias in premature infants. J Child Neurol 28:60–69
Sarnat HB, Flores-Sarnat L, Auer RN (2013b) Sequence of synaptogenesis in the human fetal and neonatal cerebellar system. Part 1. Guillain-Mollaret triangle (dentate-rubro-olivary-cerebellar circuit). Dev Neurosci 35:69–81
Sarnat HB, Flores-Sarnat L, Auer RN (2013c) Sequence of synaptogenesis in the human fetal and neonatal cerebellar system. Part 2. Pontine nuclei and cerebellar cortex. Dev Neurosci 35:317–325
Sarnat HB, Philippart M, Flores-Sarnat L, Wei X-C (2014a) Timing in ontogeny: maturational arrest, delay, precociousness, and temporal determination of malformations. Pediatr Neurol (in press)
Sarnat HB, Resch L, Flores-Sarnat L, Yu W (2014b) Precocious synapses in 13.5-week fetal holoprosencephalic cortex and cyclopean retina. Brain Dev 36:463–471
Schober A, Unsicker K (2001) Growth and neurotrophic factors regulating development and maintenance of sympathetic preganglionic neurons. Int Rev Cytol 205:37–76
Schoenherr CJ, Anderson DJ (1995a) Silencing is golden: negative regulation in the control of neuronal gene transcription. Curr Opin Neurobiol 5:566–571
Schoenherr CJ, Anderson DJ (1995b) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363
Shahim P, Mansson J-E, Darin N, Zetterberg H, Mattsson N (2013) Cerebrospinal fluid biomarkers in neurological disease in children. Eur J Paediatr Neurol 17:7–13
Shepherd C, Liu J, Goc J, Martinian L, Jacques TS, Sisodiya SM, Thom M (2013) A quantitative study of white matter hypomyelination and oligodendrocyte maturation in focal cortical dysplasia type II. Epilepsia 54:898–908
Stubbusch J, Narasimhan P, Huber K, Unsicker K, Rohrer H, Ernsberger U (2013) Synaptic protein and pan-neuronal gene expression and their regulation by Dicer-dependent mechanisms differ between neurons and neuroendocrine cells. Neural Dev 20:8–16
Tokumaru Y, Yamashita K, Kim MS, Park HL, Osada M, Mori M, Sidransky D (2008) The role of PGP9.5 as a tumor suppressor gene in human cancer. Int J Cancer 123:753–759
Tsai V, Parker WE, Orlova KA, Baybis M, Chi AWS, Berg B, Birnbaum J, Estevez J, Sarnat HB, Flores-Sarnat L, Aronica E, Crino PB (2014) Fetal brain mTOR pathway activation in tuberous sclerosis complex. Cereb Cortex 24:315–327
Ulfig N (2001) Expression of calbindin and calretinin in the human ganglionic eminence. Pediatr Neurol 24:357–360
Ulfig N (2002) Calcium-binding proteins in the human developing brain. Adv Anat Embryol Cell Biol 165:1–95
Ulfig N, Chan WY (2002) Expression of AKAP79 and synaptophysin in the developing human red nucleus. Neurosignals 11:95–102
Ulfig N, Setzer M, Neudörfer F, Saretzki U (2000) Changing distribution patterns of synaptophysin-immunoreactive structures in the human dorsal striatum of the human brain. Anat Rec 258:198–209
Wang L, Yamaguchi S, Burstein MD, Terashima K, Chang K, Ng H-K, Nakamura H, He Z, Doddapaneni H, Lewis L, Wang M, Suzuki T, Nishikawa R, Natsume A, Terasaka S, Dauser R, Whitehead W, Adekunle A, Sun J, Qiao Y, Marth G, Muzny DM, Gibbs RA, Leal SM, Wheeler DA, Lau CC (2014) Novel somatic and germline mutations in intracranial germ cell tumours. Nature 511:241–245
Wang YJ, Liu CL, Tseng GF (1996) Compartmentalization of calbindin and parvalbumin in different parts of rat rubrospinal neurons. Neuroscience 74:427–434
Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73:400–409
Wiedenmann B, Francke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 41:1017–1028
Yakovlev PI, Lecours A-R (1967) The myelination cycles of regional maturation of the brain. In: Minkowsky A (ed) Regional development of the brain in early life. Davis, Philadelphia, pp 3–70
Yew DT, Luo CB, Heizmann CW, Chan WY (1997) Differential expression of calretinin, calbindin D28K and parvalbumin in the developing human cerebellum. Dev Brain Res 103:37–45
Yu MC, Cho E, Luo CB, Li WWW, Shen WZ, Yew DT (1996) Immunohistochemical studies of GABA and parvalbumin in the developing human cerebellum. Neuroscience 70:267–276
Zehir A, Hua LL, Maska EL, Morikawa Y, Cserjesi P (2010) Dicer is required for survival of differentiating neural crest cells. Dev Biol 340:459–467
Zhu X, Gleiberman AS, Rosenfeld MG (2007) Molecular physiology of pituitary development: signalling and transcription networks. Physiol Rev 87:933–963
Author information
Authors and Affiliations
Corresponding author
Additional information
The author has no conflicts of interest or financial disclosures to declare.
Rights and permissions
About this article
Cite this article
Sarnat, H.B. Immunocytochemical markers of neuronal maturation in human diagnostic neuropathology. Cell Tissue Res 359, 279–294 (2015). https://doi.org/10.1007/s00441-014-1988-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00441-014-1988-4