Skip to main content

Advertisement

Log in

Immunocytochemical markers of neuronal maturation in human diagnostic neuropathology

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Histological descriptions of morphogenesis in human fetal brain and in malformations and tumours can now be supplemented by the timing and sequence of the maturation of individual neurons. In human neuropathology, this is principally achieved by immunocytochemical reactivities used as maturational markers of neuronal properties denoted by molecules and cell products. Cytological markers can appear early and then regress, often being replaced by more mature molecules, or might not exhibit the onset of immunoreactivity until a certain stage of neuronal differentiation is achieved, some early, others intermediate and some late during the maturational process. Inter-specific differences occur in some structures of the brain. The classification of markers of neuronal maturation can be based, in addition to those mentioned above, on several criteria: cytological localisation, water solubility, biochemical nature of the antigen, specificity and various technical factors. The most useful immunocytochemical markers of neuronal maturation in human neuropathology are NeuN, synaptophysin, calretinin and other calcium-binding molecules, various microtubule-associated proteins and chromogranins. Non-antibody histochemical stains that denote maturational processes include luxol fast blue for myelination, acridine orange fluorochrome for nucleic acids, mitochondrial respiratory chain enzymes and argentophilic impregnations. Neural crest derivatives of the peripheral nervous system, including chromaffin and neuroendocrine cells, have special features that are shared and others that differ greatly between lineages. Other techniques used in human diagnostic neuropathology, particularly as applied to tumours, include chromosomal and genetic analyses, the mTOR signalling pathway, BRAF V600E and other tumour-suppressor gene products, transcription products of developmental genes and the proliferation index of the tumour cells and of mitotic neuroepithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arda HE, Benitez CM, Kim SK (2013) Gene regulatory networks governing pancreas development. Dev Cell 25:5–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aronica E, Crino PB (2014) Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 11:251–268. doi:10.1007/s13111-013-0251-0

    PubMed  Google Scholar 

  • Auclair F, Bélanger M-C, Marachand R (1993) Ontogenetic study of early brain stem projections to the spinal cord in the rat. Brain Res Bull 30:281–289

    CAS  PubMed  Google Scholar 

  • Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308

    CAS  PubMed  Google Scholar 

  • Baizer JS (2014) Unique features of the human brainstem and cerebellum. Front Hum Neurosci 8:202. doi:10.3389/fnhum.2014.00202

    PubMed  PubMed Central  Google Scholar 

  • Baizer JS, Broussard DM (2010) Expression of calcium-binding proteins and nNOS in the human vestibular and precerebellar brainstem. J Comp Neurol 518:872–895

    CAS  PubMed  Google Scholar 

  • Banks P, Helle K (1967) The release of protein from the stimulated adrenal medulla. Biochem J 97:40–41C

    Google Scholar 

  • Bledsoe JR, Kamionek M, Mino-Kenudson M (2014) BRAF V600E immunohistochemistry is reliable in primary and metastatic colorectal carcinoma regardless of treatment status and shows high intratumoreal homogeneity. Am J Surg Pathol (in press)

  • Brat DJ, Gearing M, Goldthwaite PT, Wainer BH, Burger PC (2001) Tau-associated neuropathology in ganglion cell tumours increases with patient age but appears unrelated to ApoE genotype. Neuropathol Appl Neurobiol 27:197–205

    CAS  PubMed  Google Scholar 

  • Brown AM, Evans RD, Black JB, Ransom BR (2012) Schwann cell glycogen selectively supports myelinated axon function. Ann Neurol 72:406–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown NA, Rolland DC, McHugh JB, Weigelin HC, Zhao LL, Lim MS, Elenitoba-Johnson KS, Betz BL (2014) Activating FGFR2-RAS-BRAF mutations in ameloblastoma. Clin Cancer Res (in press)

  • Cannon JR, Greenamyre JT (2009) NeuN is not a reliable marker of dopamine neurons in rat substantia nigra. Neurosci Lett 464:14–17

    CAS  PubMed  Google Scholar 

  • Carlin K (2013) The nervous system and pH. Open J Int Med 3:126–128

    Google Scholar 

  • Chappé C, Padovani L, Scavarda D, Forest F, Nanni-Metellus I, Loundou A, Mercurio S, Fina F, Lena G, Colin C, Figarella-Branger D (2013) Dysembryoplastic neuroepithelial tumors share with pleomorphic xnthoastrocytomas and gangliogliomas BRAFV600E mutation and expression. Brain Pathol 23:574–583

    PubMed  Google Scholar 

  • Crawford JR, MacDonald TJ, Packer RJ (2007) Medulloblastoma in childhood: new biological advances. Lancet Neurol 6:1073–1085

    CAS  PubMed  Google Scholar 

  • Crino PB (2005) Molecular pathogenesis of focal cortical dysplasia and hemimegalencephaly. J Child Neurol 20:330–336

    PubMed  Google Scholar 

  • Crino PB (2011) mTOR: a pathogenic signaling pathway in developmental brain malformations. Trends Mol Med 17:734–742

    CAS  PubMed  Google Scholar 

  • Darnell RB (2013) RNA protein interaction in neurons. Annu Rev Neurosci 36:243–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dent MA, Segura-Anaya E, Alva-Medina J, Aranda-Anzaldo A (2010) NeuN/Fox-3 is an intrinsic component of the neuronal nuclear matrix. FEBS Lett 584:767–2771

    Google Scholar 

  • Drews G, Krippeit-Drews P, Düfer M (2010) Electrophysiology of islet cells. Adv Exp Med Biol 654:115–163

    CAS  PubMed  Google Scholar 

  • Dvorak K, Aggeler B, Palting J, McKelvie P, Ruszkiewicz A, Waring P (2014) Immunohistochemistry with the anti-BRAF V600E (VE1) antibody: impact of pre-analystical conditions and concordance with DNA sequencing in colorectal and papillary thyroid carcinoma. Pathology (in press)

  • Erickson JD, Lloyd R, Trojanowski JQ, Iacangelo A, Eiden E (1992) Sites of synthesis of chromogranins A and B in the human brain. Neuropeptides 21:239–244

    CAS  PubMed  Google Scholar 

  • Ernsberger U (2008) The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons. Cell Tissue Res 333:353–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ernsberger U (2009) Role of neurotrophic signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 336:349–384

    CAS  PubMed  Google Scholar 

  • Ernsberger U (2012) Regulation of gene expression during early neuronal differentiation: evidence for patterns conserved across neuron populations and vertebrate classes. Cell Tissue Res 348:1–27

    PubMed  Google Scholar 

  • Esmaeili M, Hamana BC, Navis AC, Horssen R van, Bathen TF, Gribbestad IS, Leenders WP, Heerschap A (2014) IDH1 R132H mutation generates a distinct phospholipid metabolite profile in gliomas. Cancer Res (in press)

  • Filiano JJ, Kinney HC (1992) Arcuate nucleus hypoplasias in the sudden infant death syndrome. J Neuropathol Exp Neurol 5:394–403

    Google Scholar 

  • Fisher KE, Neill SG, Ehsani L, Caltharp SA, Siddiqui MT, Cohen C (2014) Immunohistochemical investigation of BRAF p. V600E mutations in thyroid carcinoma using 2 separate BRAF antibodies. Appl Immunohistochem Mol Morphol (in press)

  • Frassoni C, Arcelli P, Selvaggio M, Spreafico R (1998) Calretinin immunoreactivity in the developing thalamus of the rat: a marker of early generated thalamic cells. Neuroscience 83:1203–1214

    CAS  PubMed  Google Scholar 

  • Fridyland LE, Jacobson DA, Phillipson LH (2013) Ion channels and regulation of insulin secretion in human β-cells: a computational systems analysis. Islets 5:1–15

    Google Scholar 

  • Geramizadeh B, Hayati K, Rahsaz M, Hosseiini SV (2009) Assessing the interstitial cells of Cajal, cells of enteric nervous system and neurotransmitters in slow transit constipation, using immunohistochemistry for CD117, PGP9.5 and serotonin. Hepatogastroenterology 56:1670–1674

    PubMed  Google Scholar 

  • Ghandour MS, Langley OK, Keller A (1981) A comparative immunohistological study of cerebellar enolases. Double labelling technique and immunoelectronmicroscopy. Exp Brain Res 41:2712–2719

    Google Scholar 

  • Gibson CJ, Muñoz DG (1993) Chromogranin A inhibits retinal dopamine release. Brain Res 622:303–306

    CAS  PubMed  Google Scholar 

  • Gilles FH (1976) Myelination in the human brain. Brain Pathol 7:244–248

    CAS  Google Scholar 

  • Gincel D, Shoshan-Barmatz V (2003) The synaptic vesicle protein synapatophysin: purification and characterization of its channel activity. Biophys J 83:3223–3229

    Google Scholar 

  • Golgi C (1875) Sulli fina struttura dei bulbi olfattorii. Rivista Sperimentale di Freniatria e di Medicina Legale 1:66–78

    Google Scholar 

  • Gotzos V, Schwaller B, Hetzel N, Bustos-Castillo M, Celio MR (1992) Expression of the calcium-binding protein in WiDr cells and its correlation to their cell cycle. Exp Cell Res 202:292–302

    CAS  PubMed  Google Scholar 

  • Gratzl M (1987) Distribution of the Ca++ binding protein chromogranin A in the pancreatic islets. Exp Brain Res 16:130–133

    Google Scholar 

  • Hall BK (2009) The neural crest and neural crest cells in vertebrate development and evolution. Springer, New York

    Google Scholar 

  • Hamprecht B, Verleysdonk S, Wiesinger H (2005) Enzymes of carbohydrate and energy metabolism. In: Kettenmann H, Ransom BR (eds) Neuroglia, 2nd edn. Oxford University Press, Oxford, pp 202–215

    Google Scholar 

  • Hamre KM, Cassell MD, West JR (1989) The development of laminar staining for neuron-specific enolase in the rat somatosensory cortex. Dev Brain Res 46:213–220

    CAS  Google Scholar 

  • Hevner RF (2000) Development of connections in the human visual system during fetal mid-gestation: a DiI tracing study. J Neuropathol Exp Neurol 59:385–392

    CAS  PubMed  Google Scholar 

  • Hewer E, Beck J, Murek M, Kappeler A, Vassella E, Vajtai I (2014) Polymorphous oligodendroglioma of Zülch revisited: a genetically heterogeneous group of anaplastic gliomas including tumors of bona fide oligodendroglial differentiation. Neuropathology. doi:10.1111/neup.12097 (in press)

    Google Scholar 

  • Honig MG, Hume RI (1989) DiI and DiO versatile fluorescente dyes for neuronal labelling and pathway tracing. Trends Neurosci 12:333–341

    CAS  PubMed  Google Scholar 

  • Huber K (2014) Segregation of neuronal and neuroendocrine differentiation in the sympathoadrenal lineage. Cell Tissue Res (this issue)

  • Ito T, Udaka N, Ikeda M, Yazawa T, Kageyama R, Kitamura H (2001) Significance of proneural basic helix-loop-helix transcription factors in neuroendocrine differentiation of fetal lung epithelial cells and lung carcinoma cells. Histol Histopathol 16:335–343

    CAS  PubMed  Google Scholar 

  • Jahn R, Schiebler W, Ouimet C, Greengard P (1985) A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A 82:4137–4141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kameda Y, Saitoh T, Nemoto N, Katoh T, Iseki S (2012) Hes1 is required for the development of the superior cervical ganglion of sympathetic trunk and the carotid body. Dev Dyn 241:1289–1300

    CAS  PubMed  Google Scholar 

  • Katsetos CD, Frankfurter A, Christakos S, Mancall EL, Vlachos IN, Urich H (1993) Differential localization of class III β-tubulin isotype and calbindin D28k defines distinct neuronal types in the developing human cerebellar cortex. J Neuropathol Exp Neurol 52:655–666

    CAS  PubMed  Google Scholar 

  • Kim KK, Adelstein RS, Kawamoto S (2009) Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem 284:31052–31061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klüver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12:400–403

    PubMed  Google Scholar 

  • Kumar SS, Buckmaster PS (2007) Neuron-specific nuclear antigen NeuN is not detectable in gerbil substantia nigra pars reticulata. Brain Res 1142:54–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A, Funari V, Russ C, Gabriel SB, Mathern GW, Gleeson JG (2012) De novo somatic mutations in components of the P13K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44:941–945

    CAS  PubMed  Google Scholar 

  • Lin AL, Liu J, Evans J, Leuthardt EC, Rich KM, Dacey RG, Dowling JL, Kim AH, Zipfel GC, Grubb RL, Huang J, Robinson CG, Simpson JR, Linette GP, Chicoine MR, Tran DD (2014) Codeletions at 1p and 19q predict a lower risk of pseudoprogression in oligodendrogliomas and mixed oligoastrocytomas. Neuro Oncol 16:123–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, Turner J, Cannons JL, Bick D, Blakemore L, Blumhorst C, Brockmann K, Calder P, Cherman N, Deardorff MA, Everman DB, Golas G, Greenstein RM, Kato BM, Keppler-Noreuil KM, Kuznetsov SA, Miyamoto RT, Newman K, Ng D, O'Brien K, Rothenberg S, Schwartzentruber DJ, Singhal V, Tirabosco R, Upton J, Wientroub S, Zackai EH, Hoag K, Whitewood-Neal T, Robey PG, Schwartzberg PL, Darling TN, Tosi LL, Mullikin JC, Biesecker LG (2011) A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med 365:611–619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linstedt AD, Kelly RB (1991) Endocytosis of the synapatic vesicle protein, synaptophysin, requires the COOH-terminal tail. J Physiol (Paris) 85:90–96

    CAS  Google Scholar 

  • Lloyd RV, Cano M, Rosa P, Hille A, Huttner WB (1988) Distribution of chromogranin-A and secretogranin I (chromogranin-B) in neuroendocrine cells and tumors. Am J Pathol 130:296–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lummus SC, Aisner DL, Sams SB, Foreman NK, Lillehei KO, Kleinschmidt-DeMasters BK (2014) Massive dissemination from spinal cord gangliogliomas netaive for BRAF V600E. Report of two rare adult cases. Am J Clin Pathol 142:254–260

    PubMed  Google Scholar 

  • Mackenzie I, Neumann M, Cairns NJ, Muñoz DG, Isaacs AM (2012) Novel types of frontotemporal lobar degeneration: beyond tau and TDP-43. J Mol Neurosci 122:87–89

    Google Scholar 

  • Marangos PJ, Schemechel DE, Parma AM, Goodwin FK (1980) Developmental profile of neuron-specific (NSE) and non-neuronal (NNE) enolase. Brain Res 190:185–193

    CAS  PubMed  Google Scholar 

  • Marín-Padilla M (2011) The human brain. Prenatal development and structure. Springer, Heidelberg

    Google Scholar 

  • Massaro AN, Baumgart S, McCarter R, Nelson K, Glass P (2014) Biomarkers S100B and neuron-specific enolase predict outcome in hypothermia-treated encephalopathic newborns. Pediatr Crit Care Med (in press)

  • Matturi L, Biondo B, Mercurio P (2000) Severe hypoplasia of medullary arcuate nucleus: quantitative analysis in sudden infant death syndrome. Acta Neuropathol 99:371–375

    Google Scholar 

  • Maxeiner S, Glassmann A, Kao HT, Schilling K (2014) The molecular basis of the specificity and cross-reactivity of the NeuN epitope of the neuron-specific splicing regulator, Rbfox3. Histochem Cell Biol 141:43–55

    CAS  PubMed  Google Scholar 

  • Mulligan LM, Mole SE (1993) Strategies for isolating genes in hereditary and sporadic tumors. In: Levine AJ, Schmidek HH (eds) Molecular genetics of nervous system tumors. Wiley-Liss, New York, pp 195–208

    Google Scholar 

  • Muñoz DG (1990) Monodendritic neurons: a cell type in the human cerebellar cortex identified by chromogranin A-like immunoreactivity. Brain Res 528:336–338

    Google Scholar 

  • Muñoz DG, Kobylinski L, Henry DD, George DH (1990) Chromogranin A-like immunoreactivity in the human brain: distribution in bulbar medulla and cerebral cortex. Neuroscience 34:533–543

    PubMed  Google Scholar 

  • Neuman B, Wiedermann CJ, Fischer-Colbrie R, Schober M, Sperk G, Winkler H (1984) Biochemical and functional properties of large and small dense-core vesicles in sympathetic nerves of rat and ox vas deferens. Neuroscience 13:921–931

    CAS  PubMed  Google Scholar 

  • Nishimura M, Takashima S, Takeshita K, Tanaka J (1985) Developmental changes of neuron-specific enolase in human brain: an immunohistochemical study. Brain Dev 7:1–6

    CAS  PubMed  Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel

    Google Scholar 

  • Pathak D, Berthet A, Nakamura K (2013) Energy failure: does it contribute to neurodegeneration? Ann Neurol 74:506–516

    PubMed  PubMed Central  Google Scholar 

  • Pearlstein MV, Zedek DC, Ollila DW, Treece A, Gulley ML, Groben PA, Thomas NE (2014) Validation of the VE1 immunostain for the BRAF V600E mutation in melanoma. J Cutan Pathol. doi:10.1111/cup.12364

    PubMed  Google Scholar 

  • Pellerin L, Therianos S, Magistretti PJ (2001) The metabolic functions of glial cells. In: Jessen KR, Richardson WM (eds) Glial cell development, 2nd edn. Oxford University Press, Oxford, pp 91–107

    Google Scholar 

  • Pi H-J, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503:521–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poduri A, Evrony GD, Cai X, Elhosary PC, Beroukhim R, Lehtinen MK, Hils LB, Heinzen EL, Hill A, Hill RS, Barry BJ, Bourgeois BF, Riviello JJ, Barkovich AJ, Black PM, Ligon KL, Walsh CA (2012) Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74:41–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poduri A, Evrony GD, Cai X, Walsh CA (2013) Somatic mutation, genomic variation, and neurologic disease. Science 341:1237758. 10.1126/science.1237758

  • Prabowo A, Anink J, Lammens M, Nellist M, Ouweland AMW van den, Adle-Biassette H, Sarnat HB, Flores-Sarnat L, Crino PB, Aronica E (2013) Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol 23:45–59

  • Prabowo AS, Iyer AM, Veersma TJ, Anink JJ, Shouten-van Meeteren AY, Spliet WG, Rijen PC van, Ferrier CH, Thom M, Aronica E (2014) Expression of neurodegenerative disease-related proteins and caspase-3 in glioneuronal tumours. Neuropathol Appl Neurobiol. doi: 10.1111/nan.12143

  • Ramón y Cajal S (1881) Sur la structure de l’écorce cérébrale de quelques mammifères. La Céllule 7:125–176

    Google Scholar 

  • Ramón y Cajal S (1909–1911) Histologie du système nerveux de l’homme et des vértébrés. Maloine, Paris. Reprinted in English translation, Histology of the Nervous System of Man and Vertebrates (in 2 volumes). Oxford University Press, Oxford (1995)

    Google Scholar 

  • Rasmussen CD, Means AR (1992) Calmodulin, cell growth and gene expression. Trends Neurosci 46:433–438

    Google Scholar 

  • Reiffen FU, Gratzl M (1986) Chromogranins, widespread in endocrine and nervous tissues, bind Ca++. FEBS Lett 195:327–330

    CAS  PubMed  Google Scholar 

  • Reyes-Botero G, Dehais C, Idbaih A, Martin-Duverneuil N, Lahutte M, Carpentier C, Letouzé E, Chinot O, Loiseau H, Honnorat J, Ramírez C, Moyal E, Figarella-Branger D, Ducray F, POLA network (2014) Contrast enhancement in 1p/19q-codeleted anaplastic oligodendrogliomas is associated with 9p loss, genomic instablility, and agniogenic gene expression. Neuro Oncol 16:662–670

  • Rodríguez FJ, Tihan T, Lin D, McDonald W, Nigro J, Feueerstein B, Jackson S, Cohen K, Burger PC (2014) Clinicopathological featrure of pediatric oligodendrogliomas: a series of 50 patients. Am J Surg Pathol (in press)

  • Rorke LB, Riggs HE (1969) Myelination in the brain of the newborn. Lippincott, Philadelphia

    Google Scholar 

  • Rorsman P, Braun M (2013) Regulation of insulin secretion in human pancreatic islets. Annu Rev Physiol 75:155–179

    CAS  PubMed  Google Scholar 

  • Royds JA, Parsons MA, Taylor CB, Timperley WR (1982) Enolase isoenzyme distribution in the human brain and its tumors. J Pathol 137:37–49

    CAS  PubMed  Google Scholar 

  • Sainath R, Gallo G (2014) Cytoskeletal and signaling mechanisms of neurite formation. Cell Tissue Res (this issue)

  • Sakuma S, Halliday WC, Nomura R, Ochi A, Otsuba H (2014) Increased populations of oligodendrocyte-like cells in pediatric intractable epilepsy. Neurosci Lett 566:188–193

    CAS  PubMed  Google Scholar 

  • Sarnat HB (1985) L’acridine-orange: un fluorochrome des acides nucléiques pour l’étude des cellules musculaires et nerveuses. Rev Neurol (Paris) 141:120–127

    CAS  Google Scholar 

  • Sarnat HB (1989) Répartition de l’ARN au cours de la migration neuronale dans les cerveaux normaux et dysplastiques en développement chez l’homme: étude à l’acridine-orange. Rev Neurol (Paris) 145:127–133

    CAS  Google Scholar 

  • Sarnat HB (1998a) Histochemistry and immunocytochemistry of the developing ependyma and choroid plexus. Microsc Res Tech 41:14–28

    CAS  PubMed  Google Scholar 

  • Sarnat HB (1998b) Vimentin immunohistochemistry in human fetal brain: methods of standard incubation versus thermal intensification achieve different objectives. Pediatr Dev Pathol 1:222–229

    CAS  PubMed  Google Scholar 

  • Sarnat HB (2004) Regional ependymal upregulation of vimentin in Chiari II malformation, aqueductal stenosis and hydromyelia. Pediatr Dev Pathol 7:48–60

    CAS  PubMed  Google Scholar 

  • Sarnat HB (2013) Clinical neuropathology practice guide 5–2013: markers of neuronal maturation. Clin Neuropathol 32:340–369

    PubMed  PubMed Central  Google Scholar 

  • Sarnat HB, Born DE (1999) Synaptophysin immunocytochemistry with thermal intensification: a marker of terminal axonal maturation in the human fetal nervous system. Brain Dev 21:41–50

    CAS  PubMed  Google Scholar 

  • Sarnat HB, Flores-Sarnat L (2009) α-B-crystallin: a tissue marker of epileptic foci in paediatric resections. Can J Neurol Sci 36:566–574

    PubMed  Google Scholar 

  • Sarnat HB, Flores-Sarnat L (2013) Precocious and delayed neocortical synaptogenesis in fœtal holoprosencephaly. Clin Neuropathol 32:255–268

    PubMed  Google Scholar 

  • Sarnat HB, Flores-Sarnat L (2014) Infantile tauopathies: hemimegalencphaly; tuberous sclerosis complex; focal cortical dysplasia 2; ganglioglioma. Brain Dev (in press)

  • Sarnat HB, Nochlin D, Born DE (1998) Neuronal nuclear antigen (NeuN) as a marker of neuronal maturation in the early human fetal nervous system. Brain Dev 20:88–94

    CAS  PubMed  Google Scholar 

  • Sarnat HB, Flores-Sarnat L, Trevenen CL (2010) Synaptophysin immunoreactivity in the human hippocampus and neocortex from 6 to 41 weeks of gestation. J Neuropathol Exp Neurol 69:234–245

    PubMed  Google Scholar 

  • Sarnat HB, Flores-Sarnat L, Hader W, Bello-Espinosa L (2011) Mitochondrial “hypermetabolic” neurons in paediatric epileptic foci. Can J Neurol Sci 38:909–917

    PubMed  Google Scholar 

  • Sarnat HB, Flores-Sarnat L, Crino PB, Hader W, Bello-Espinosa L (2012) Hemimegalencephaly: fetal tauopathy, mTOR activation and neuronal lipidosis. Folia Neuropathol 50:330–345

    PubMed  Google Scholar 

  • Sarnat HB, Auer RN, Flores-Sarnat L (2013a) Synaptogenesis in the fetal corpus striatum, globus pallidus and substantia nigra. Correlations with striosomes of Graybiel and dyskinesias in premature infants. J Child Neurol 28:60–69

    PubMed  Google Scholar 

  • Sarnat HB, Flores-Sarnat L, Auer RN (2013b) Sequence of synaptogenesis in the human fetal and neonatal cerebellar system. Part 1. Guillain-Mollaret triangle (dentate-rubro-olivary-cerebellar circuit). Dev Neurosci 35:69–81

    CAS  PubMed  Google Scholar 

  • Sarnat HB, Flores-Sarnat L, Auer RN (2013c) Sequence of synaptogenesis in the human fetal and neonatal cerebellar system. Part 2. Pontine nuclei and cerebellar cortex. Dev Neurosci 35:317–325

    CAS  PubMed  Google Scholar 

  • Sarnat HB, Philippart M, Flores-Sarnat L, Wei X-C (2014a) Timing in ontogeny: maturational arrest, delay, precociousness, and temporal determination of malformations. Pediatr Neurol (in press)

  • Sarnat HB, Resch L, Flores-Sarnat L, Yu W (2014b) Precocious synapses in 13.5-week fetal holoprosencephalic cortex and cyclopean retina. Brain Dev 36:463–471

    PubMed  Google Scholar 

  • Schober A, Unsicker K (2001) Growth and neurotrophic factors regulating development and maintenance of sympathetic preganglionic neurons. Int Rev Cytol 205:37–76

    CAS  PubMed  Google Scholar 

  • Schoenherr CJ, Anderson DJ (1995a) Silencing is golden: negative regulation in the control of neuronal gene transcription. Curr Opin Neurobiol 5:566–571

    CAS  PubMed  Google Scholar 

  • Schoenherr CJ, Anderson DJ (1995b) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363

    CAS  PubMed  Google Scholar 

  • Shahim P, Mansson J-E, Darin N, Zetterberg H, Mattsson N (2013) Cerebrospinal fluid biomarkers in neurological disease in children. Eur J Paediatr Neurol 17:7–13

    PubMed  Google Scholar 

  • Shepherd C, Liu J, Goc J, Martinian L, Jacques TS, Sisodiya SM, Thom M (2013) A quantitative study of white matter hypomyelination and oligodendrocyte maturation in focal cortical dysplasia type II. Epilepsia 54:898–908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stubbusch J, Narasimhan P, Huber K, Unsicker K, Rohrer H, Ernsberger U (2013) Synaptic protein and pan-neuronal gene expression and their regulation by Dicer-dependent mechanisms differ between neurons and neuroendocrine cells. Neural Dev 20:8–16

    Google Scholar 

  • Tokumaru Y, Yamashita K, Kim MS, Park HL, Osada M, Mori M, Sidransky D (2008) The role of PGP9.5 as a tumor suppressor gene in human cancer. Int J Cancer 123:753–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai V, Parker WE, Orlova KA, Baybis M, Chi AWS, Berg B, Birnbaum J, Estevez J, Sarnat HB, Flores-Sarnat L, Aronica E, Crino PB (2014) Fetal brain mTOR pathway activation in tuberous sclerosis complex. Cereb Cortex 24:315–327

    PubMed  Google Scholar 

  • Ulfig N (2001) Expression of calbindin and calretinin in the human ganglionic eminence. Pediatr Neurol 24:357–360

    CAS  PubMed  Google Scholar 

  • Ulfig N (2002) Calcium-binding proteins in the human developing brain. Adv Anat Embryol Cell Biol 165:1–95

    Google Scholar 

  • Ulfig N, Chan WY (2002) Expression of AKAP79 and synaptophysin in the developing human red nucleus. Neurosignals 11:95–102

    CAS  PubMed  Google Scholar 

  • Ulfig N, Setzer M, Neudörfer F, Saretzki U (2000) Changing distribution patterns of synaptophysin-immunoreactive structures in the human dorsal striatum of the human brain. Anat Rec 258:198–209

    CAS  PubMed  Google Scholar 

  • Wang L, Yamaguchi S, Burstein MD, Terashima K, Chang K, Ng H-K, Nakamura H, He Z, Doddapaneni H, Lewis L, Wang M, Suzuki T, Nishikawa R, Natsume A, Terasaka S, Dauser R, Whitehead W, Adekunle A, Sun J, Qiao Y, Marth G, Muzny DM, Gibbs RA, Leal SM, Wheeler DA, Lau CC (2014) Novel somatic and germline mutations in intracranial germ cell tumours. Nature 511:241–245

  • Wang YJ, Liu CL, Tseng GF (1996) Compartmentalization of calbindin and parvalbumin in different parts of rat rubrospinal neurons. Neuroscience 74:427–434

    CAS  PubMed  Google Scholar 

  • Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73:400–409

    CAS  PubMed  Google Scholar 

  • Wiedenmann B, Francke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 41:1017–1028

    CAS  PubMed  Google Scholar 

  • Yakovlev PI, Lecours A-R (1967) The myelination cycles of regional maturation of the brain. In: Minkowsky A (ed) Regional development of the brain in early life. Davis, Philadelphia, pp 3–70

    Google Scholar 

  • Yew DT, Luo CB, Heizmann CW, Chan WY (1997) Differential expression of calretinin, calbindin D28K and parvalbumin in the developing human cerebellum. Dev Brain Res 103:37–45

    CAS  Google Scholar 

  • Yu MC, Cho E, Luo CB, Li WWW, Shen WZ, Yew DT (1996) Immunohistochemical studies of GABA and parvalbumin in the developing human cerebellum. Neuroscience 70:267–276

    CAS  PubMed  Google Scholar 

  • Zehir A, Hua LL, Maska EL, Morikawa Y, Cserjesi P (2010) Dicer is required for survival of differentiating neural crest cells. Dev Biol 340:459–467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Gleiberman AS, Rosenfeld MG (2007) Molecular physiology of pituitary development: signalling and transcription networks. Physiol Rev 87:933–963

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey B. Sarnat.

Additional information

The author has no conflicts of interest or financial disclosures to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarnat, H.B. Immunocytochemical markers of neuronal maturation in human diagnostic neuropathology. Cell Tissue Res 359, 279–294 (2015). https://doi.org/10.1007/s00441-014-1988-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1988-4

Keywords

Navigation