Skip to main content
Log in

Expression and localization of transcription factors SNAIL and SLUG in mouse ovaries and pre-implantation embryos

  • Regular article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

SNAIL and SLUG are zinc-finger transcription factors that participate in the regulation of cell division, cell survival, mesoderm formation and epithelial-to-mesenchymal transition. We investigate the expression of SNAIL and SLUG during follicular maturation, ovulation and luteinization in the ovaries of both neonatal mice and gonadotropin-induced immature mice. Furthermore, we examine the expression and localization of these transcription factors during early embryonic cleavage. Our data demonstrate that both SNAIL and SLUG are present in the epithelial cells of the ovarian surface in immature mice. SNAIL is first evident in the interstitial cells and theca cells by postnatal day (PD) 6 and then appears in the oocytes by PD 8, remaining at a constant expression level for all stages studied thereafter. SLUG is expressed in oocytes as early as PD 1. Its expression also increases with the development of the follicles in theca and interstitial cells but not in granulosa cells. In gonadotropin-induced immature mice, both SNAIL and SLUG are expressed in the corpora lutea. During early embryo cleavage, SNAIL occurs in the nucleus and cytoplasm of the majority of the embryo, excluding the nucleolus from the germinal vesicle breakdown (GVBD) to the 8-cell stage and is then localized in the cytoplasm during the morula stage and in the nucleus during the blastocyst stage. SLUG has an identical expression pattern as SNAIL from GVBD until the morula stage, except that it is localized in the cytoplasm during the blastocyst stage. Taken together, these different localization patterns suggest that SNAIL and SLUG probably play important roles during follicular development, luteinization and early embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acevedo N, Wang X, Dunn RL, Smith GD (2007) Glycogen synthase kinase-3 regulation of chromatin segregation and cytokinesis in mouse preimplantation embryos. Mol Reprod Dev 74:178–188

    Article  PubMed  CAS  Google Scholar 

  • Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161

    Article  PubMed  CAS  Google Scholar 

  • Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, Herreros AG de (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

  • Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116:499–511

    Article  PubMed  Google Scholar 

  • Bouchard C, Thieke K, Maier A, Saffrich R, Hanley-Hyde J, Ansorge W, Reed S, Sicinski P, Bartek J, Eilers M (1999) Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J 18:5321–5333

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bowman P, McLaren A (1970) Cleavage rate of mouse embryos in vivo and in vitro. J Embryol Exp Morphol 24:203–207

    PubMed  CAS  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, Barrio MG del, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

  • Cantley LC (2002)The phosphoinositide 3-kinase pathway.Science 296:1655–1657

    Article  PubMed  CAS  Google Scholar 

  • Carver EA, Jiang R, Lan Y, Oram KF, Gridley T (2001) The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 21:8184–8188

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dominguez D, Montserrat-Sentis B, Virgos-Soler A, Guaita S, Grueso J, Porta M, Puig I, Baulida J, Franci C, Garcia de Herreros A (2003) Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol Cell Biol 23:5078–5089

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Duggavathi R, Volle DH, Mataki C, Antal MC, Messaddeq N, Auwerx J, Murphy BD, Schoonjans K (2008) Liver receptor homolog 1 is essential for ovulation. Genes Dev 22:1871–1876

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Freeman ME (1994) The neuroendocrine control of the ovarian cycle of the rat. Physiol Reprod 2:613–658

    Google Scholar 

  • Goodall H (1986) Manipulation of gap junctional communication during compaction of the mouse early embryo. J Embryol Exp Morphol 91:283–296

    PubMed  CAS  Google Scholar 

  • Grimes HL, Chan TO, Zweidler-McKay PA, Tong B, Tsichlis PN (1996) The Gfi-1 proto-oncoprotein contains a novel transcriptional repressor domain, SNAG, and inhibits G1 arrest induced by interleukin-2 withdrawal. Mol Cell Biol 16:6263–6272

    PubMed  CAS  PubMed Central  Google Scholar 

  • Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, De Herreros AG, Baulida J (2002) Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 277:39209–39216

    Article  PubMed  CAS  Google Scholar 

  • Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613–1618

    PubMed  CAS  Google Scholar 

  • Hardy K, Spanos S (2002) Growth factor expression and function in the human and mouse preimplantation embryo. J Endocrinol 172:221–236

    Article  PubMed  CAS  Google Scholar 

  • Hemavathy K, Ashraf SI, Ip YT (2000) Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene 257:1–12

    Article  PubMed  CAS  Google Scholar 

  • Hirshfield AN (1991) Development of follicles in the mammalian ovary. Int Rev Cytol 124:43–101

    Article  PubMed  CAS  Google Scholar 

  • Hyafil F, Morello D, Babinet C, Jacob F (1980) A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell 21:927–934

    Article  PubMed  CAS  Google Scholar 

  • Ikenouchi J, Matsuda M, Furuse M, Tsukita S (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116:1959–1967

    Article  PubMed  CAS  Google Scholar 

  • Jiang R, Lan Y, Norton CR, Sundberg JP, Gridley T (1998) The Slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 198:277–285

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Knight RD, Shimeld SM (2001) Identification of conserved C2H2 zinc-finger gene families in the Bilateria. Genome Biol 2:RESEARCH0016

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172:973–981

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mauhin V, Lutz Y, Dennefeld C, Alberga A (1993) Definition of the DNA-binding site repertoire for the Drosophila transcription factor SNAIL. Nucleic Acids Res 21:3951–3957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McGee EA, Hsueh AJ (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21:200–214

    PubMed  CAS  Google Scholar 

  • Nakayama H, Scott IC, Cross JC (1998) The transition to endoreduplication in trophoblast giant cells is regulated by the mSNA zinc finger transcription factor. Dev Biol 199:150–163

    Article  PubMed  CAS  Google Scholar 

  • Nieto MA (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3:155–166

    Article  PubMed  CAS  Google Scholar 

  • Nieto MÁ, Bennett MF, Sargent MG, Wilkinson DG (1992) Cloning and developmental expression of Sna, a murine homologue of the Drosophila snail gene. Development 116:227–237

    PubMed  CAS  Google Scholar 

  • Nio-Kobayashi J, Iwanaga T (2010) Differential cellular localization of galectin-1 and galectin-3 in the regressing corpus luteum of mice and their possible contribution to luteal cell elimination. J Histochem Cytochem 58:741–749

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peters H (1969) The development of the mouse ovary from birth to maturity. Acta Endocrinol 62:98-116

    PubMed  CAS  Google Scholar 

  • Poser I, Domínguez D, Herreros AG de, Varnai A, Buettner R, Bosserhoff AK (2001) Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem 276:24661–24666

  • Richards JS, Russell DL, Robker RL, Dajee M, Alliston TN (1998) Molecular mechanisms of ovulation and luteinization.Mol Cell Endocrinol 145:47–54

    Article  PubMed  CAS  Google Scholar 

  • Riethmacher D, Brinkmann V, Birchmeier C (1995) A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci 92:855–859

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Riley JK, Carayannopoulos MO, Wyman AH, Chi M, Ratajczak CK, Moley KH (2005) The PI3K/Akt pathway is present and functional in the preimplantation mouse embryo. Dev Biol 284:377–386

    Article  PubMed  CAS  Google Scholar 

  • Robker RL, Richards JS (1998a) Hormonal control of the cell cycle in ovarian cells: proliferation versus differentiation. Biol Reprod 59:476–482

    Article  PubMed  CAS  Google Scholar 

  • Robker RL, Richards JS (1998b) Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1. Mol Endocrinol 12:924–940

    Article  PubMed  CAS  Google Scholar 

  • Savagner P, Karavanova I, Perantoni A, Thiery JP, Yamada KM (1998) Slug mRNA is expressed by specific mesodermal derivatives during rodent organogenesis. Dev Dyn 213:182–187

    Article  PubMed  CAS  Google Scholar 

  • Scaramuzzi RJ, Adams NR, Baird DT, Campbell BK, Downing JA, Findlay JK, Henderson KM, Martin GB, McNatty KP, McNeilly AS, Tsonis CG (1993) A model for follicle selection and the determination of ovulation rate in the ewe. Reprod Fertil Dev 5:459–478

    Article  PubMed  CAS  Google Scholar 

  • Smith DE, Franco del Amo F, Gridley T (1992) Isolation of Sna, a mouse gene homologous to the Drosophila genes snail and escargot: its expression pattern suggests multiple roles during postimplantation development. Development 116:1033–1039

    PubMed  CAS  Google Scholar 

  • Sterneck E, Tessarollo L, Johnson PF (1997) An essential role for C/EBPbeta in female reproduction. Genes Dev 11:2153–2162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28:117–149

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Zhang C (2011) Relationship between Sloan-Kettering virus expression and mouse follicular development. Endocrine 40:187–195

    Article  PubMed  CAS  Google Scholar 

  • Tríbulo C, Aybar MJ, Sánchez SS, Mayor R (2004) A balance between the anti-apoptotic activity of Slug and the apoptotic activity of msx1 is required for the proper development of the neural crest.Dev Biol 275:325–342

    Article  PubMed  Google Scholar 

  • Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA (2004) Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18:1131–1143

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vestweber D, Kemler R (1984) Rabbit antiserum against a purified surface glycoprotein decompacts mouse preimplantation embryos and reacts with specific adult tissues. Exp Cell Res 152:169–178

    Article  PubMed  CAS  Google Scholar 

  • Watson A, Natale D, Barcroft L (2004) Molecular regulation of blastocyst formation. Anim Reprod Sci 82:583–592

    Article  PubMed  Google Scholar 

  • Woodgett JR (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 9:2431

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu K, Gore C, Yang L, Fazli L, Gleave M, Pong R-C, Xiao G, Zhang L, Yun E-J, Tseng S-F (2012) Slug, a unique androgen-regulated transcription factor, coordinates androgen receptor to facilitate castration resistance in prostate cancer. Mol Endocrinol 26:1496–1507

    Article  PubMed  CAS  Google Scholar 

  • Young JM, McNeilly AS (2010) Theca: the forgotten cell of the ovarian follicle. Reproduction 140:489–504

    Article  PubMed  CAS  Google Scholar 

  • Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6:931–940

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cong Zhang or Wei-Ping Li.

Additional information

This work was supported by the National Natural Science Foundation of China (NSFC, no. 31172040), SDNSF (ZR2011CM047), SRF for ROCS and SEM to C. Zhang, by the NSFC (81370692) to W.P. Li and by the Shanghai Commission of Science and Technology (12DZ2260600).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Meng, X., Bai, J. et al. Expression and localization of transcription factors SNAIL and SLUG in mouse ovaries and pre-implantation embryos. Cell Tissue Res 358, 585–595 (2014). https://doi.org/10.1007/s00441-014-1951-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1951-4

Keywords

Navigation