Skip to main content

Advertisement

Log in

Developmental regulations of Perp in mice molar morphogenesis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Teraspanin transmembrane protein, Perp (P53 apoptosis effector related to PMP22), which is found in the plasma membrane as a component of the desmosome, is reported to be involved in the morphogenesis of the epithelium and the enamel formation of the incisor. However, its expression pattern and signaling regulation during molar development have not been elucidated in detail. We have examined the precise expression patterns of Perp in developing lower molars and employed the knock-down of Perp by antisense oligodeoxynucleotide treatment during in vitro organ cultivation at embryonic day 13 to define the precise developmental function of Perp. Perp was expressed mainly in the dental lamina and stellate reticulum regions at the bud and cap stages. After Perp knock-down, the tooth germ showed disruption of the dental lamina and stellate reticulum with altered apoptosis and proliferation. The changed expression levels of related signaling molecules from the enamel knot and desmosome were evaluated by real-time quantitative polymerase chain reaction. A renal capsule transplantation method was employed to examine the effects of Perp knock-down on molar crown development. Ultrastructural observations revealed that enamel was deposited more densely in an irregular pattern in the cusp region, and that dentin was hypo-mineralized after Perp knock-down at the cap stage. Thus, Perp might play important roles in the formation and integration of stellate reticulum, dental lamina structure and enamel formation through signaling interactions with the enamel knot and desmosome-related signaling molecules at the cap stage of lower molar development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Attardi LD, Reczek EE, Cosmas C, Demicco EG, McCurrach ME, Lowe SW, Jacks T (2000) PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev 14:704–718

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baratella L, Arana-Chavez VE, Katchburian E (1999) Apoptosis in the early involuting stellate reticulum of rat molar tooth germs. Anat Embryol 200:49–54

    Article  PubMed  CAS  Google Scholar 

  • Beaudry VG, Ihrie RA, Jacobs SBR, Nguyen B, Pathak N, Park E, Attardi LD (2010) Loss of the desmosomal component PERP impairs wound healing in vivo. Dermatol Res Pract 2010:759731

    PubMed  PubMed Central  Google Scholar 

  • Cai J, Cho SW, Kim JY, Lee MJ, Cha YG, Jung HS (2007) Patterning the size and number of tooth and its cusps. Dev Biol 304:499–507

    Article  PubMed  CAS  Google Scholar 

  • Cam Y, Fausser JL, Vonesch JL, Peterkova R, Peterka M, Halaskova M, Lesot H (2002) Asymmetrical morphogenesis and medio-lateral positioning of molars during mouse development. Eur J Oral Sci 110:35–43

    Article  PubMed  Google Scholar 

  • Dassule HR, Lewis P, Bei M, Maas R, McMahon AP (2000) Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127:4775–4785

    PubMed  CAS  Google Scholar 

  • Fausser JL, Schlepp O, Aberdam D, Meneguzzi G, Ruch JV, Lesot H (1998) Localization of antigens associated with adherens junctions, desmosomes, and hemidesmosomes during murine molar morphogenesis. Differentiation 63:1–11

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Yang G, Yuan G, Gluhak-Heinrich J, Yang W, Wang L, Chen Z, Schulze McDaniel J, Donly KJ, Harris SE, Macdougall M, Chen S (2011) Abnormalities in the enamel in Bmp2-deficient mice. Cells Tissues Organs 194:216–221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ferone G, Mollo MR, Thomason HA, Antonini D, Zhou H, Ambrosio R, De Rosa L, Salvatore D, Getsios S, van Bokhoven H, Dixon J, Missero C (2013) p63 control of desmosome gene expression and adhesion is compromised in AEC syndrome. Hum Mol Genet 22:531–543

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Franke WW, Heid H, Zimbelmann R, Kuhn C, Winter-Simanowski SW, Dörflinger Y, Grund C, Rickelt S (2013) Transmembrane protein PERP is a component of tessellate junctions and of other junctional and non-junctional plasma membrane regions in diverse epithelial and epithelium-derived cells. Cell Tissue Res 353:99–115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gluhak-Heinrich J, Guo D, Yang W, Harris MA, Lichtler A, Kream B, Zhang J, Feng JQ, Smith LC, Dechow P, Harris SE (2010) New roles and mechanism of action of BMP4 in postnatal tooth cytodifferentiation. Bone 46:1533–1545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guha U, Gomes WA, Kobayashi T, Pestell RG, Kessler JA (2002) In vivo evidence that Bmp signaling is necessary for apoptosis in the mouse limb. Dev Biol 249:108–120

    Article  PubMed  CAS  Google Scholar 

  • Ihrie RA, Marques MR, Nguyen BT, Horner JS, Papazoglu C, Bronson RT, Mills AA, Attardi LD (2005) PERP is a p63-regulated gene essential for epithelial integrity. Cell 120:843–856

    Article  PubMed  CAS  Google Scholar 

  • Ihrie RA, Bronson RT, Attardi LD (2006) Adult mice lacking the p53/p63 target gene Perp are not predisposed to spontaneous tumorigenesis but features of ectodermal dysplasia syndromes. Cell Death Differ 13:1614–1618

    Article  PubMed  CAS  Google Scholar 

  • Ishida K, Murofushi M, Nakao K, Morita R, Ogawa M, Tsuji T (2011) The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial-mesenchymal interactions. Biochem Biophys Res Commun 405:455–461

    Article  PubMed  CAS  Google Scholar 

  • Jernvall J, Thesleff I (2000) Reiterative signaling and patterning in mammalian tooth morphogenesis. Mech Dev 92:19–29

    Article  PubMed  CAS  Google Scholar 

  • Jernvall J, Abert T, Kettunen P, Keranen S, Thesleff I (1998) The life history of embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125:161–169

    PubMed  CAS  Google Scholar 

  • Jheon AH, Mostowfil P, Snead ML, Ihrie RA, Sone E, Pramparo Attardi LD, Klein OD (2011) PERP regulates enamel formation via effects on cell–cell adhesion and gene expression. J Cell Sci 124:745–754

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kettunen P, Thesleff I (1998) Expression and function of FGFs-4, −8, and −9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 211:256–268

    Article  PubMed  CAS  Google Scholar 

  • Kieffer-Combeau S, Meyer JM, Lesot H (2001) Cell-matrix interactions and cell-cell junctions during epithelial histo-morphogenesis in the developing mouse incisor. Int J Dev Biol 45:733–742

    PubMed  CAS  Google Scholar 

  • Kim JY, Lee MJ, Cho KW, Lee JM, Kim YJ, Kim JY, Jung HI, Cho JY, Cho SW, Jung HS (2009) Shh and ROCK1 modulate the dynamic epithelial morphogenesis in circumvallate papilla development. Dev Biol 325:273–280

    Article  PubMed  CAS  Google Scholar 

  • Kratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R (2002) FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1−/− mice. Genes Dev 16:3173–3185

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kwon TG, Lee CO, Park JW, Choi SY, Rijal G, Shin HI (2014) Osteonecrosis associated with dental implants in patients undergoing bisphosphonate treatment. Clin Oral Implants Res 25:632–640

    Article  PubMed  Google Scholar 

  • Legan PK, Yue KK, Chidgey MA, Holton JL, Wilkinson RW, Garrod DR (1994) The bovine desmocollin family: a new gene and expression patterns reflecting epithelial cell proliferation and differentiation. J Cell Biol 126:507–518

    Article  PubMed  CAS  Google Scholar 

  • Lyngstadaas SP, Moinichen CB, Risnes S (1998) Crown morphology, enamel distribution and enamel structure in mouse molars. Anat Rec 250:268–280

    Article  PubMed  CAS  Google Scholar 

  • Nancy A (2012) Development of tooth and its supporting tissues. Ten Cate’s oral histology, 8th edn. Elsevier, Mosby, pp 80–81

    Google Scholar 

  • Sasaki T, Ito Y, Xu X, Han J, Bringas P Jr, Maeda T, Slavkin HC, Grosschedl R, Yang C (2005) Lef1 is a critical epithelial survival factor during tooth morphogenesis. Dev Biol 278:130–143

    Article  PubMed  CAS  Google Scholar 

  • Senoo M, Pinto F, Crum CP, McKeon F (2007) p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129:523–536

    Article  PubMed  CAS  Google Scholar 

  • Sohn WJ, Yamamoto H, Shin HI, Ryoo ZY, Lee S, Bae YC, Jung HS, Kim JY (2011) Importance of region-specific epithelial rearrangements in mouse rugae development. Cell Tissue Res 344:271–177

    Article  PubMed  Google Scholar 

  • Sohn WJ, Kim HS, Gwon GJ, Chae YM, An CH, Park HD, Jung HS, Ryoo ZY, Lee S, Kim JY (2012) Rgs19 regulates mouse palatal fusion by modulating cell proliferation and apoptosis in the MEE. Mech Dev 129:244–254

    Article  PubMed  CAS  Google Scholar 

  • Sohn WJ, Choi MA, Yamamoto H, Lee S, Jung JK, Jin MU, An CH, Jung HS, Suh JY, Shin HI, Kim JY (2014) Contribution of mesenchymal proliferation in tooth root morphogenesis. J Dent Res 93:78–83

    Article  PubMed  Google Scholar 

  • Stewart GA, Lowrey JA, Wakelin SJ, Fitch PA, Lindey S, Dallman MJ, Lamb JR, Howie SEM (2002) Sonic hedgehog signaling modulates activation of and cytokine production by human peripheral CD4+ T cells. J Immunol 169:5451–5457

    Article  PubMed  CAS  Google Scholar 

  • Thesleff I (2003) Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 116:1647–1648

    Article  PubMed  CAS  Google Scholar 

  • Thesleff I, Mikkola M (2002) The role of growth factors in tooth development. Int Rev Cytol 217:93–135

    Article  PubMed  CAS  Google Scholar 

  • Tucker A, Sharpe P (2004) The cutting edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5:499–508

    Article  PubMed  CAS  Google Scholar 

  • Tummers M, Thesleff I (2009) The importance of signal pathway modulation in all aspect of tooth development. J Exp Zool B Mol Dev Evol 312B:309–319

    Article  PubMed  Google Scholar 

  • Vaahtokari A, Åbert T, Jernvall J, Keränen S, Thesleff I (1996) The enamel knot as a signaling center in the developing mouse tooth. Mech Dev 54:39–43

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Harris MA, Cui Y, Mishina Y, Harris SE, Gluhak-Heinrich J (2012) Bmp2 is required for odontoblast differentiation and pulp vasculogenesis. J Dent Res 91:58–64

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Zhang Z, Zhao X, Yu X, Hu Y, Geronimo B, Fromm SH, Chen YP (2000) A new function of BMP4: dual role for BMP4 in regulation of Sonic hedgehog expression in the mouse tooth germ. Development 127:1431–1443

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Young Kim.

Additional information

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP; no. 2008–0062282).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Immunolocalization of Perp. At E16.5, Perp is localized in the DL, SR and SI (a). Higher magnifications of images showing Perp localization in DL (b), SR (c) and SI (d). Similar localization pattern of Perp is observed in the OE, DL, SR and SI except the AB at PN2 and PN6 (e-l). OE; Oral Epithelium, DL; Dental Lamina, SR; Stellate Reticulum, SI; Stratum Intermedium, AB; Ameloblast. Scale bars 100 μm (a, e, i), 50 μm (b-c, f-g, j-k), 10 μm (d, h, l) (GIF 384 kb)

High resolution image (TIFF 6884 kb)

Figure S2

EDX-analysis (EDXA) of kidney capsule calcified control (a-c) and AS-ODN (d-f) teeth. The EDXA mapping images (b-c, e-f) for calcium and phosphorus distribution are based on SEM micrographs (a, d). The table shows the calcium and phosphorus distribution in the control and AS-ODN teeth. Ca; Calcium, P; Phosphorus (GIF 241 kb)

High resolution image (TIFF 8064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neupane, S., Sohn, WJ., Rijal, G. et al. Developmental regulations of Perp in mice molar morphogenesis. Cell Tissue Res 358, 109–121 (2014). https://doi.org/10.1007/s00441-014-1908-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1908-7

Keywords

Navigation