Skip to main content

Advertisement

Log in

Crafting the Brain – Role of Histone Acetyltransferases in Neural Development and Disease

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The human brain is a highly specialized organ containing nearly 170 billion cells with specific functions. Development of the brain requires adequate proliferation, proper cell migration, differentiation and maturation of progenitors. This is in turn dependent on spatial and temporal coordination of gene transcription, which requires the integration of both cell intrinsic and environmental factors. Histone acetyltransferases (HATs) are one family of proteins that modulate expression levels of genes in a space- and time-dependent manner. HATs and their molecular complexes are able to integrate multiple molecular inputs and mediate transcriptional levels by acetylating histone proteins. In mammals, 19 HATs have been described and are separated into five families (p300/CBP, MYST, GNAT, NCOA and transcription-related HATs). During embryogenesis, individual HATs are expressed or activated at specific times and locations to coordinate proper development. Not surprisingly, mutations in HATs lead to severe developmental abnormalities in the nervous system and increased neurodegeneration. This review focuses on our current understanding of HATs and their biological roles during neural development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5:367–375

    CAS  PubMed  Google Scholar 

  • Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, Barco A (2004) Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42:947–959

    CAS  PubMed  Google Scholar 

  • Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456

    CAS  PubMed  Google Scholar 

  • Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007) New nomenclature for chromatin-modifying enzymes. Cell 131:633–636

    CAS  PubMed  Google Scholar 

  • Auger AP, Tetel MJ, McCarthy MM (2000) Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology and behavior. Proc Natl Acad Sci USA 97:7551–7555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    CAS  PubMed  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    CAS  PubMed  Google Scholar 

  • Bhattacharya S, Eckner R, Grossman S, Oldread E, Arany Z, D’Andrea A, Livingston DM (1996) Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature 383:344–347

    CAS  PubMed  Google Scholar 

  • Bhattacherjee V, Horn KH, Singh S, Webb CL, Pisano MM, Greene RM (2009) CBP/p300 and associated transcriptional co-activators exhibit distinct expression patterns during murine craniofacial and neural tube development. Int J Dev Biol 53:1097–1104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borrow J, Stanton VP Jr, Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C, Dube I, Frischauf AM, Horsman D, Mitelman F, Volinia S, Watmore AE, Housman DE (1996) The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14:33–41

    CAS  PubMed  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851

    CAS  PubMed  Google Scholar 

  • Bu P, Evrard YA, Lozano G, Dent SY (2007) Loss of Gcn5 acetyltransferase activity leads to neural tube closure defects and exencephaly in mouse embryos. Mol Cell Biol 27:3405–3416

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Callebaut I, Mornon JP (2012) The PWAPA cassette: intimate association of a PHD-like finger and a winged-helix domain in proteins included in histone-modifying complexes. Biochimie 94:2006–2012

    CAS  PubMed  Google Scholar 

  • Campeau PM, Kim JC, Lu JT, Schwartzentruber JA, Abdul-Rahman OA, Schlaubitz S, Murdock DM, Jiang MM, Lammer EJ, Enns GM, Rhead WJ, Rowland J, Robertson SP, Cormier-Daire V, Bainbridge MN, Yang XJ, Gingras MC, Gibbs RA, Rosenblatt DS, Majewski J, Lee BH (2012) Mutations in KAT6B, encoding a histone acetyltransferase, cause Genitopatellar syndrome. Am J Hum Genet 90:282–289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao X, Sudhof TC (2001) A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293:115–120

    CAS  PubMed  Google Scholar 

  • Carriere L, Graziani S, Alibert O, Ghavi-Helm Y, Boussouar F, Humbertclaude H, Jounier S, Aude JC, Keime C, Murvai J, Foglio M, Gut M, Gut I, Lathrop M, Soutourina J, Gerard M, Werner M (2012) Genomic binding of Pol III transcription machinery and relationship with TFIIS transcription factor distribution in mouse embryonic stem cells. Nucleic Acids Res 40:270–283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Champagne N, Bertos NR, Pelletier N, Wang AH, Vezmar M, Yang Y, Heng HH, Yang XJ (1999) Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem 274:28528–28536

    CAS  PubMed  Google Scholar 

  • Chan HM, La Thangue NB (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114:2363–2373

    CAS  PubMed  Google Scholar 

  • Chang L, Loranger SS, Mizzen C, Ernst SG, Allis CD, Annunziato AT (1997) Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells. Biochemistry 36:469–480

    CAS  PubMed  Google Scholar 

  • Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580

    CAS  PubMed  Google Scholar 

  • Chinenov Y (2002) A second catalytic domain in the Elp3 histone acetyltransferases: a candidate for histone demethylase activity? Trends Biochem Sci 27:115–117

    CAS  PubMed  Google Scholar 

  • Chokroverty S (2009) Sleep and neurodegenerative diseases. Semin Neurol 29:446–467

    PubMed  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    CAS  PubMed  Google Scholar 

  • Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859

    CAS  PubMed  Google Scholar 

  • Clayton-Smith J, O’Sullivan J, Daly S, Bhaskar S, Day R, Anderson B, Voss AK, Thomas T, Biesecker LG, Smith P, Fryer A, Chandler KE, Kerr B, Tassabehji M, Lynch SA, Krajewska-Walasek M, McKee S, Smith J, Sweeney E, Mansour S, Mohammed S, Donnai D, Black G (2011) Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome. Am J Hum Genet 89:675–681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crepaldi L, Policarpi C, Coatti A, Sherlock WT, Jongbloets BC, Down TA, Riccio A (2013) Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories. PLoS Genet 9:e1003699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, Laguesse S, Cornez I, Rahmouni S, Ormenese S, Belachew S, Malgrange B, Chapelle JP, Siebenlist U, Moonen G, Chariot A, Nguyen L (2009) Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin. Cell 136:551–564

    CAS  PubMed  Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol 319:1097–1113

    CAS  PubMed  Google Scholar 

  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    PubMed Central  PubMed  Google Scholar 

  • Debruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM (2006) A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 50:465–477

    CAS  PubMed  Google Scholar 

  • Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508

    CAS  PubMed  Google Scholar 

  • Doyon Y, Selleck W, Lane WS, Tan S, Cote J (2004) Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24:1884–1896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21:51–64

    CAS  PubMed  Google Scholar 

  • Dutnall RN, Tafrov ST, Sternglanz R, Ramakrishnan V (1998) Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 94:427–438

    CAS  PubMed  Google Scholar 

  • Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM (1994) Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8:869–884

    CAS  PubMed  Google Scholar 

  • Etchegaray JP, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421:177–182

    CAS  PubMed  Google Scholar 

  • Feil R, Fraga MF (2011) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109

    Google Scholar 

  • Forlani S, Lawson KA, Deschamps J (2003) Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development 130:3807–3819

    CAS  PubMed  Google Scholar 

  • Garcia-Ramirez M, Rocchini C, Ausio J (1995) Modulation of chromatin folding by histone acetylation. J Biol Chem 270:17923–17928

    CAS  PubMed  Google Scholar 

  • Gehin M, Mark M, Dennefeld C, Dierich A, Gronemeyer H, Chambon P (2002) The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol Cell Biol 22:5923–5937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569

    CAS  PubMed  Google Scholar 

  • Georgala PA, Carr CB, Price DJ (2011) The role of Pax6 in forebrain development. Dev Neurobiol 71:690–709

    CAS  PubMed  Google Scholar 

  • Gilbert SF (2003) Developmental Biology. Sinauer, Sunderland

    Google Scholar 

  • Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14:1553–1577

    CAS  PubMed  Google Scholar 

  • Goto S, Lee LV, Munoz EL, Tooyama I, Tamiya G, Makino S, Ando S, Dantes MB, Yamada K, Matsumoto S, Shimazu H, Kuratsu J, Hirano A, Kaji R (2005) Functional anatomy of the basal ganglia in X-linked recessive dystonia-parkinsonism. Ann Neurol 58:7–17

    PubMed  Google Scholar 

  • Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    PubMed  Google Scholar 

  • Greene ND, Copp AJ (2009) Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn 29:303–311

    CAS  PubMed  Google Scholar 

  • Guelman S, Kozuka K, Mao Y, Pham V, Solloway MJ, Wang J, Wu J, Lill JR, Zha J (2009) The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol 29:1176–1188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta A, Guerin-Peyrou TG, Sharma GG, Park C, Agarwal M, Ganju RK, Pandita S, Choi K, Sukumar S, Pandita RK, Ludwig T, Pandita TK (2008) The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis. Mol Cell Biol 28:397–409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hawkes NA, Otero G, Winkler GS, Marshall N, Dahmus ME, Krappmann D, Scheidereit C, Thomas CL, Schiavo G, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2002) Purification and characterization of the human elongator complex. J Biol Chem 277:3047–3052

    CAS  PubMed  Google Scholar 

  • Hayakawa T, Nakayama J (2011) Physiological roles of class I HDAC complex and histone demethylase. J Biomed Biotechnol 2011:129383

    PubMed Central  PubMed  Google Scholar 

  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    CAS  PubMed  Google Scholar 

  • Henry RA, Kuo YM, Andrews AJ (2013) Differences in specificity and selectivity between CBP and p300 acetylation of histone H3 and H3/H4. Biochemistry 52:5746–5759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16:2054–2060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hochheimer A, Tjian R (2003) Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev 17:1309–1320

    CAS  PubMed  Google Scholar 

  • Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM (1993) Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 "tail" to DNA. J Biol Chem 268:305–314

    CAS  PubMed  Google Scholar 

  • Hong H, Kohli K, Garabedian MJ, Stallcup MR (1997) GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 17:2735–2744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsieh YJ, Kundu TK, Wang Z, Kovelman R, Roeder RG (1999) The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity. Mol Cell Biol 19:7697–7704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu Y, Fisher JB, Koprowski S, McAllister D, Kim MS, Lough J (2009) Homozygous disruption of the Tip60 gene causes early embryonic lethality. Dev Dyn 238:2912–2921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161

    CAS  PubMed  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    CAS  PubMed  Google Scholar 

  • Jambaldorj J, Makino S, Munkhbat B, Tamiya G (2012) Sustained expression of a neuron-specific isoform of the Taf1 gene in development stages and aging in mice. Biochem Biophys Res Commun 425:273–277

    CAS  PubMed  Google Scholar 

  • Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, Wang C, Brindle PK, Dent SY, Ge K (2011) Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27 ac in nuclear receptor transactivation. EMBO J 30:249–262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson AA, Sarthi J, Pirooznia SK, Reube W, Elefant F (2013) Increasing Tip60 HAT levels rescues axonal transport defects and associated behavioral phenotypes in a Drosophila Alzheimer’s disease model. J Neurosci 33:7535–7547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Josselyn SA (2005) What’s right with my mouse model? New insights into the molecular and cellular basis of cognition from mouse models of Rubinstein-Taybi Syndrome. Learn Mem 12:80–83

    PubMed  Google Scholar 

  • Kalkhoven E (2004) CBP and p300: HATs for different occasions. Biochem Pharmacol 68:1145–1155

    CAS  PubMed  Google Scholar 

  • Kamine J, Elangovan B, Subramanian T, Coleman D, Chinnadurai G (1996) Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 216:357–366

    CAS  PubMed  Google Scholar 

  • Kasper LH, Boussouar F, Ney PA, Jackson CW, Rehg J, van Deursen JM, Brindle PK (2002) A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature 419:738–743

    CAS  PubMed  Google Scholar 

  • Katsumoto T, Aikawa Y, Iwama A, Ueda S, Ichikawa H, Ochiya T, Kitabayashi I (2006) MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev 20:1321–1330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JH, Lane WS, Reinberg D (2002) Human Elongator facilitates RNA polymerase II transcription through chromatin. Proc Natl Acad Sci USA 99:1241–1246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim CH, Kim JW, Jang SM, An JH, Song KH, Choi KH (2012) Transcriptional activity of paired homeobox Pax6 is enhanced by histone acetyltransferase Tip60 during mouse retina development. Biochem Biophys Res Commun 424:427–432

    CAS  PubMed  Google Scholar 

  • Kinoshita A, Whelan CM, Berezovska O, Hyman BT (2002) The gamma secretase-generated carboxyl-terminal domain of the amyloid precursor protein induces apoptosis via Tip60 in H4 cells. J Biol Chem 277:28530–28536

    CAS  PubMed  Google Scholar 

  • Kirkland JG, Raab JR, Kamakaka RT (2013) TFIIIC bound DNA elements in nuclear organization and insulation. Biochim Biophys Acta 1829:418–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kleff S, Andrulis ED, Anderson CW, Sternglanz R (1995) Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 270:24674–24677

    CAS  PubMed  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871

    CAS  PubMed  Google Scholar 

  • Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42:961–972

    CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  • Kraft M, Cirstea IC, Voss AK, Thomas T, Goehring I, Sheikh BN, Gordon L, Scott H, Smyth GK, Ahmadian MR, Trautmann U, Zenker M, Tartaglia M, Ekici A, Reis A, Dorr HG, Rauch A, Thiel CT (2011) Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome-like phenotype and hyperactivated MAPK signaling in humans and mice. J Clin Invest 121:3479–3491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kueh AJ, Dixon MP, Voss AK, Thomas T (2011) HBO1 is required for H3K14 acetylation and normal transcriptional activity during embryonic development. Mol Cell Biol 31:845–860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kundu TK, Wang Z, Roeder RG (1999) Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity. Mol Cell Biol 19:1605–1615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuo MH, Brownell JE, Sobel RE, Ranalli TA, Cook RG, Edmondson DG, Roth SY, Allis CD (1996) Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383:269–272

    CAS  PubMed  Google Scholar 

  • Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8:284–295

    CAS  PubMed  Google Scholar 

  • Lee LV, Maranon E, Demaisip C, Peralta O, Borres-Icasiano R, Arancillo J, Rivera C, Munoz E, Tan K, Reyes MT (2002) The natural history of sex-linked recessive dystonia parkinsonism of Panay, Philippines (XDP). Parkinsonism Relat Dis 9:29–38

    Google Scholar 

  • Lee S, Lee B, Lee JW, Lee SK (2009) Retinoid signaling and neurogenin2 function are coupled for the specification of spinal motor neurons through a chromatin modifier CBP. Neuron 62:641–654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemon B, Tjian R (2000) Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 14:2551–2569

    CAS  PubMed  Google Scholar 

  • Lilja T, Heldring N, Hermanson O (2013) Like a rolling histone: epigenetic regulation of neural stem cells and brain development by factors controlling histone acetylation and methylation. Biochim Biophys Acta 1830:2354–2360

    CAS  PubMed  Google Scholar 

  • Lim DA, Suarez-Farinas M, Naef F, Hacker CR, Menn B, Takebayashi H, Magnasco M, Patil N, Alvarez-Buylla A (2006) In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis. Mol Cell Neurosci 31:131–148

    CAS  PubMed  Google Scholar 

  • Lin W, Zhang Z, Chen CH, Behringer RR, Dent SY (2008a) Proper Gcn5 histone acetyltransferase expression is required for normal anteroposterior patterning of the mouse skeleton. Develop Growth Differ 50:321–330

    CAS  Google Scholar 

  • Lin W, Zhang Z, Srajer G, Chen YC, Huang M, Phan HM, Dent SY (2008b) Proper expression of the Gcn5 histone acetyltransferase is required for neural tube closure in mouse embryos. Dev Dyn 237:928–940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    CAS  PubMed  Google Scholar 

  • Louet JF, O’Malley BW (2007) Coregulators in adipogenesis: what could we learn from the SRC (p160) coactivator family? Cell Cycle 6:2448–2452

    CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    CAS  PubMed  Google Scholar 

  • Lundblad JR, Kwok RP, Laurance ME, Harter ML, Goodman RH (1995) Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374:85–88

    CAS  PubMed  Google Scholar 

  • Lunyak VV, Atallah M (2011) Genomic relationship between SINE retrotransposons, Pol III-Pol II transcription, and chromatin organization: the journey from junk to jewel. Biochem Cell Biol 89:495–504

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makino S, Kaji R, Ando S, Tomizawa M, Yasuno K, Goto S, Matsumoto S, Tabuena MD, Maranon E, Dantes M, Lee LV, Ogasawara K, Tooyama I, Akatsu H, Nishimura M, Tamiya G (2007) Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet 80:393–406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marmorstein R, Roth SY (2001) Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 11:155–161

    CAS  PubMed  Google Scholar 

  • Martinez E, Kundu TK, Fu J, Roeder RG (1998) A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J Biol Chem 273:23781–23785

    CAS  PubMed  Google Scholar 

  • Martinez-Cerdeno V, Lemen JM, Chan V, Wey A, Lin W, Dent SR, Knoepfler PS (2012) N-Myc and GCN5 regulate significantly overlapping transcriptional programs in neural stem cells. PloS ONE 7:e39456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merson TD, Dixon MP, Collin C, Rietze RL, Bartlett PF, Thomas T, Voss AK (2006) The transcriptional coactivator Querkopf controls adult neurogenesis. J Neurosci 26:11359–11370

    CAS  PubMed  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller RW, Rubinstein JH (1995) Tumors in Rubinstein-Taybi syndrome. Am J Med Genet 56:112–115

    CAS  PubMed  Google Scholar 

  • Misiti S, Koibuchi N, Bei M, Farsetti A, Chin WW (1999) Expression of steroid receptor coactivator-1 mRNA in the developing mouse embryo: a possible role in olfactory epithelium development. Endocrinology 140:1957–1960

    CAS  PubMed  Google Scholar 

  • Mizzen CA, Yang XJ, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T, Workman J, Wang L, Berger SL, Kouzarides T, Nakatani Y, Allis CD (1996) The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270

    CAS  PubMed  Google Scholar 

  • Nagarajan P, Ge Z, Sirbu B, Doughty C, Agudelo Garcia PA, Schlederer M, Annunziato AT, Cortez D, Kenner L, Parthun MR (2013) Histone acetyl transferase 1 is essential for mammalian development, genome stability, and the processing of newly synthesized histones H3 and H4. PLoS Genet 9:e1003518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284:479–482

    CAS  PubMed  Google Scholar 

  • Nishihara E, Yoshida-Komiya H, Chan CS, Liao L, Davis RL, O’Malley BW, Xu J (2003) SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells. J Neurosci 23:213–222

    CAS  PubMed  Google Scholar 

  • Nishihara E, Moriya T, Shinohara K (2007) Expression of steroid receptor coactivator-1 is elevated during neuronal differentiation of murine neural stem cells. Brain Res 1135:22–30

    CAS  PubMed  Google Scholar 

  • North BJ, Verdin E (2004) Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 5:224

    PubMed Central  PubMed  Google Scholar 

  • Nunan J, Small DH (2000) Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett 483:6–10

    CAS  PubMed  Google Scholar 

  • Oelgeschlager M, Janknecht R, Krieg J, Schreek S, Luscher B (1996) Interaction of the co-activator CBP with Myb proteins: effects on Myb-specific transactivation and on the cooperativity with NF-M. EMBO J 15:2771–2780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oike Y, Hata A, Mamiya T, Kaname T, Noda Y, Suzuki M, Yasue H, Nabeshima T, Araki K, Yamamura K (1999a) Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum Mol Genet 8:387–396

    CAS  PubMed  Google Scholar 

  • Oike Y, Takakura N, Hata A, Kaname T, Akizuki M, Yamaguchi Y, Yasue H, Araki K, Yamamura K, Suda T (1999b) Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood 93:2771–2779

    CAS  PubMed  Google Scholar 

  • Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463:554–558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Papai G, Weil PA, Schultz P (2011) New insights into the function of transcription factor TFIID from recent structural studies. Curr Opin Genet Dev 21:219–224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parthun MR (2007) Hat1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene 26:5319–5328

    CAS  PubMed  Google Scholar 

  • Parthun MR, Widom J, Gottschling DE (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87:85–94

    CAS  PubMed  Google Scholar 

  • Pelletier N, Champagne N, Stifani S, Yang XJ (2002) MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene 21:2729–2740

    CAS  PubMed  Google Scholar 

  • Pelletier N, Champagne N, Lim H, Yang XJ (2003) Expression, purification, and analysis of MOZ and MORF histone acetyltransferases. Methods 31:24–32

    CAS  PubMed  Google Scholar 

  • Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ et al (1995) Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376:348–351

    CAS  PubMed  Google Scholar 

  • Pirooznia SK, Chiu K, Chan MT, Zimmerman JE, Elefant F (2012a) Epigenetic regulation of axonal growth of Drosophila pacemaker cells by histone acetyltransferase tip60 controls sleep. Genetics 192:1327–1345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pirooznia SK, Sarthi J, Johnson AA, Toth MS, Chiu K, Koduri S, Elefant F (2012b) Tip60 HAT activity mediates APP induced lethality and apoptotic cell death in the CNS of a Drosophila Alzheimer’s disease model. PloS One 7:e41776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Price D, Jarman AP, Mason JO, Kind PC (2011) Building brains: an introduction to neural development. Wiley-Blackwell, Chichester

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    CAS  PubMed  Google Scholar 

  • Rochefort C, Gheusi G, Vincent JD, Lledo PM (2002) Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 22:2679–2689

    CAS  PubMed  Google Scholar 

  • Roelfsema JH, Peters DJ (2007) Rubinstein-Taybi syndrome: clinical and molecular overview. Expert Rev Mol Med 9:1–16

    PubMed  Google Scholar 

  • Roelfsema JH, White SJ, Ariyurek Y, Bartholdi D, Niedrist D, Papadia F, Bacino CA, den Dunnen JT, van Ommen GJ, Breuning MH, Hennekam RC, Peters DJ (2005) Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am J Hum Genet 76:572–580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sako W, Morigaki R, Kaji R, Tooyama I, Okita S, Kitazato K, Nagahiro S, Graybiel AM, Goto S (2011) Identification and localization of a neuron-specific isoform of TAF1 in rat brain: implications for neuropathology of DYT3 dystonia. Neuroscience 189:100–107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sapountzi V, Logan IR, Robson CN (2006) Cellular functions of TIP60. Int J Biochem Cell Biol 38:1496–1509

    CAS  PubMed  Google Scholar 

  • Scott EK, Lee T, Luo L (2001) enok encodes a Drosophila putative histone acetyltransferase required for mushroom body neuroblast proliferation. Curr Biol 11:99–104

    CAS  PubMed  Google Scholar 

  • Sheikh BN, Dixon MP, Thomas T, Voss AK (2012) Querkopf is a key marker of self-renewal and multipotency of adult neural stem cells. J Cell Sci 125:295–309

    CAS  PubMed  Google Scholar 

  • Simpson CL, Lemmens R, Miskiewicz K, Broom WJ, Hansen VK, van Vught PW, Landers JE, Sapp P, Van Den Bosch L, Knight J, Neale BM, Turner MR, Veldink JH, Ophoff RA, Tripathi VB, Beleza A, Shah MN, Proitsi P, Van Hoecke A, Carmeliet P, Horvitz HR, Leigh PN, Shaw CE, van den Berg LH, Sham PC, Powell JF, Verstreken P, Brown RH Jr, Robberecht W, Al-Chalabi A (2009) Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum Mol Genet 18:472–481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simpson MA, Deshpande C, Dafou D, Vissers LE, Woollard WJ, Holder SE, Gillessen-Kaesbach G, Derks R, White SM, Cohen-Snuijf R, Kant SG, Hoefsloot LH, Reardon W, Brunner HG, Bongers EM, Trembath RC (2012) De novo mutations of the gene encoding the histone acetyltransferase KAT6B cause Genitopatellar syndrome. Am J Hum Genet 90:290–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sims RJ 3rd, Belotserkovskaya R, Reinberg D (2004) Elongation by RNA polymerase II: the short and long of it. Genes Dev 18:2437–2468

    CAS  PubMed  Google Scholar 

  • Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, Liebert CB, Chadwick B, Idelson M, Reznik L, Robbins C, Makalowska I, Brownstein M, Krappmann D, Scheidereit C, Maayan C, Axelrod FB, Gusella JF (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68:598–605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198

    CAS  PubMed  Google Scholar 

  • Squatrito M, Gorrini C, Amati B (2006) Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol 16:433–442

    CAS  PubMed  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20:327–348

    PubMed Central  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    CAS  PubMed  Google Scholar 

  • Suganuma T, Gutierrez JL, Li B, Florens L, Swanson SK, Washburn MP, Abmayr SM, Workman JL (2008) ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nat Struct Mol Biol 15:364–372

    CAS  PubMed  Google Scholar 

  • Sun Y, Jiang X, Price BD (2010) Tip60: connecting chromatin to DNA damage signaling. Cell Cycle 9:930–936

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swaab DF, Fliers E (1985) A sexually dimorphic nucleus in the human brain. Science 228:1112–1115

    CAS  PubMed  Google Scholar 

  • Szumiel I, Foray N (2011) Chromatin acetylation, beta-amyloid precursor protein and its binding partner FE65 in DNA double strand break repair. Acta Biochim Pol 58:11–18

    CAS  PubMed  Google Scholar 

  • Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A (2005) hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25:6798–6810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka Y, Naruse I, Maekawa T, Masuya H, Shiroishi T, Ishii S (1997) Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc Natl Acad Sci USA 94:10215–10220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka Y, Naruse I, Hongo T, Xu M, Nakahata T, Maekawa T, Ishii S (2000) Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein. Mech Dev 95:133–145

    CAS  PubMed  Google Scholar 

  • Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040

    CAS  PubMed  Google Scholar 

  • Thomas T, Voss AK (2007) The diverse biological roles of MYST histone acetyltransferase family proteins. Cell Cycle 6:696–704

    CAS  PubMed  Google Scholar 

  • Thomas T, Voss AK, Chowdhury K, Gruss P (2000) Querkopf, a MYST family histone acetyltransferase, is required for normal cerebral cortex development. Development 127:2537–2548

    CAS  PubMed  Google Scholar 

  • Thomas T, Corcoran LM, Gugasyan R, Dixon MP, Brodnicki T, Nutt SL, Metcalf D, Voss AK (2006) Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes Dev 20:1175–1186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas T, Dixon MP, Kueh AJ, Voss AK (2008) Mof (MYST1 or KAT8) is essential for progression of embryonic development past the blastocyst stage and required for normal chromatin architecture. Mol Cell Biol 28:5093–5105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG (1997) The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–684

    CAS  PubMed  Google Scholar 

  • Tse C, Sera T, Wolffe AP, Hansen JC (1998) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 18:4629–4638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsukahara S (2009) Sex differences and the roles of sex steroids in apoptosis of sexually dimorphic nuclei of the preoptic area in postnatal rats. J Neuroendocrinol 21:370–376

    CAS  PubMed  Google Scholar 

  • Viosca J, Lopez-Atalaya JP, Olivares R, Eckner R, Barco A (2010) Syndromic features and mild cognitive impairment in mice with genetic reduction on p300 activity: Differential contribution of p300 and CBP to Rubinstein-Taybi syndrome etiology. Neurobiol Dis 37:186–194

    PubMed  Google Scholar 

  • Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457:854–858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voegel JJ, Heine MJ, Tini M, Vivat V, Chambon P, Gronemeyer H (1998) The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J 17:507–519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voss AK, Thomas T (2009) MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays 31:1050–1061

    CAS  PubMed  Google Scholar 

  • Voss AK, Thomas T (2011) Concepts in Histone Acetyltransferase Biology. In: Craig JM, Wong NC (eds) Epigenetics - A reference manual. Caister, Norfolk

    Google Scholar 

  • Voss AK, Collin C, Dixon MP, Thomas T (2009) Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity. Dev Cell 17:674–686

    CAS  PubMed  Google Scholar 

  • Voss AK, Vanyai HK, Collin C, Dixon MP, McLennan TS, Sheikh BN, Scambler P, Thomas T (2012) MOZ regulates the Tbx1 locus, and Moz mutation partially phenocopies DiGeorge syndrome. Dev Cell 23:652–663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walfish PG, Yoganathan T, Yang YF, Hong H, Butt TR, Stallcup MR (1997) Yeast hormone response element assays detect and characterize GRIP1 coactivator-dependent activation of transcription by thyroid and retinoid nuclear receptors. Proc Natl Acad Sci USA 94:3697–3702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang YL, Faiola F, Xu M, Pan S, Martinez E (2008) Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J Biol Chem 283:33808–33815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–1031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Weaver IC, Gauthier-Fisher A, Wang H, He L, Yeomans J, Wondisford F, Kaplan DR, Miller FD (2010) CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein-Taybi syndrome brain. Dev Cell 18:114–125

    CAS  PubMed  Google Scholar 

  • Wassarman DA, Sauer F (2001) TAF(II)250: a transcription toolbox. J Cell Sci 114:2895–2902

    CAS  PubMed  Google Scholar 

  • Weiskirchen R, Gressner AM (2000) The cysteine- and glycine-rich LIM domain protein CRP2 specifically interacts with a novel human protein (CRP2BP). Biochem Biophys Res Commun 274:655–663

    CAS  PubMed  Google Scholar 

  • Winkler GS, Kristjuhan A, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2002) Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. Proc Natl Acad Sci USA 99:3517–3522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wittschieben BO, Otero G, de Bizemont T, Fellows J, Erdjument-Bromage H, Ohba R, Li Y, Allis CD, Tempst P, Svejstrup JQ (1999) A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell 4:123–128

    CAS  PubMed  Google Scholar 

  • Wood MA, Kaplan MP, Park A, Blanchard EJ, Oliveira AM, Lombardi TL, Abel T (2005) Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn Mem 12:111–119

    PubMed Central  PubMed  Google Scholar 

  • Xu J, Li Q (2003) Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol 17:1681–1692

    CAS  PubMed  Google Scholar 

  • Xu J, Qiu Y, DeMayo FJ, Tsai SY, Tsai MJ, O’Malley BW (1998) Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279:1922–1925

    CAS  PubMed  Google Scholar 

  • Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O’Malley BW (2000a) The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci USA 97:6379–6384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu W, Edmondson DG, Evrard YA, Wakamiya M, Behringer RR, Roth SY (2000b) Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development. Nat Genet 26:229–232

    CAS  PubMed  Google Scholar 

  • Xu J, Wu RC, O’Malley BW (2009) Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 9:615–630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamauchi T, Yamauchi J, Kuwata T, Tamura T, Yamashita T, Bae N, Westphal H, Ozato K, Nakatani Y (2000) Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis. Proc Natl Acad Sci USA 97:11303–11306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324

    CAS  PubMed  Google Scholar 

  • Yang C, Shapiro LH, Rivera M, Kumar A, Brindle PK (1998) A role for CREB binding protein and p300 transcriptional coactivators in Ets-1 transactivation functions. Mol Cell Biol 18:2218–2229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao YL, Yang WM (2011) Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates. J Biomed Biotechnol 2011:146493

    PubMed Central  PubMed  Google Scholar 

  • Yao TP, Ku G, Zhou N, Scully R, Livingston DM (1996) The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc Natl Acad Sci USA 93:10626–10631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao TP, Oh SP, Fuchs M, Zhou ND, Ch’ng LE, Newsome D, Bronson RT, Li E, Livingston DM, Eckner R (1998) Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93:361–372

    CAS  PubMed  Google Scholar 

  • Zhang CL, Zou Y, He W, Gage FH, Evans RM (2008) A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 451:1004–1007

    CAS  PubMed  Google Scholar 

  • Zhu X, Singh N, Donnelly C, Boimel P, Elefant F (2007) The cloning and characterization of the histone acetyltransferase human homolog Dmel\TIP60 in Drosophila melanogaster: Dmel\TIP60 is essential for multicellular development. Genetics 175:1229–1240

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Tim Thomas, Hannah Vanyai and Farrah El-Saafin for stimulating discussions and comments on the manuscript. My apologies to colleagues whose important research could not be discussed here due to space limitations. This work was supported by the Australian National Health and Medical Research Council (scholarship to B.N.S.), operational infrastructure grants from the Australian Federal Government (IRISS) and the Victorian State Government (OIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal N. Sheikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, B.N. Crafting the Brain – Role of Histone Acetyltransferases in Neural Development and Disease. Cell Tissue Res 356, 553–573 (2014). https://doi.org/10.1007/s00441-014-1835-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1835-7

Keywords

Navigation