Cell and Tissue Research

, Volume 356, Issue 3, pp 477–493 | Cite as

Sensing cellular states—signaling to chromatin pathways targeting Polycomb and Trithorax group function

  • Addie Kolybaba
  • Anne-Kathrin Classen


Cells respond to extra- and intra-cellular signals by dynamically changing their gene expression patterns. After termination of the original signal, new expression patterns are maintained by epigenetic DNA and histone modifications. This represents a powerful mechanism that enables long-term phenotypic adaptation to transient signals. Adaptation of epigenetic landscapes is important for mediating cellular differentiation during development and allows adjustment to altered environmental conditions throughout life. Work over the last decade has begun to elucidate the way that extra- and intra-cellular signals lead to changes in gene expression patterns by directly modulating the function of chromatin-associated proteins. Here, we review key signaling-to-chromatin pathways that are specifically thought to target Polycomb and Trithorax group complexes, a classic example of epigenetically acting gene silencers and activators important in development, stem cell differentiation and cancer. We discuss the influence that signals triggered by kinase cascades, metabolic fluctuations and cell-cycle dynamics have on the function of these protein complexes. Further investigation into these pathways will be important for understanding the mechanisms that maintain epigenetic stability and those that promote epigenetic plasticity.


Polycomb/Trithorax Epigenetic Kinase signaling Metabolism Cell cycle 


  1. Adam J, Yang M, Soga T, Pollard PJ (2013) Rare insights into cancer biology. Oncogene. doi: 10.1038/onc.2013.222 PubMedCentralGoogle Scholar
  2. Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 23:853–859PubMedCentralPubMedGoogle Scholar
  3. Andreeva VA, Touvier M, Kesse-Guyot E, Julia C, Galan P, Hercberg S (2012) B vitamin and/or ω-3 fatty acid supplementation and cancer: ancillary findings from the supplementation with folate, vitamins B6 and B12, and/or omega-3 fatty acids (SU.FOL.OM3) randomized trial.Arch Intern Med 172:540–547PubMedGoogle Scholar
  4. Aoto T, Saitoh N, Sakamoto Y, Watanabe S, Nakao M (2008) Polycomb group protein-associated chromatin is reproduced in post-mitotic G1 phase and is required for S phase progression. J Biol Chem 283:18905–18915PubMedGoogle Scholar
  5. Ardehali MB, Mei A, Zobeck KL, Caron M, Lis JT, Kusch T (2011) Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J 30:2817–2828PubMedCentralPubMedGoogle Scholar
  6. Baek SH (2011) When signaling kinases meet histones and histone modifiers in the nucleus. Mol Cell 42:274–284PubMedGoogle Scholar
  7. Banerjee T, Chakravarti D (2011) A peek into the complex realm of histone phosphorylation. Mol Cell Biol 31:4858–4873PubMedCentralPubMedGoogle Scholar
  8. Beisel C, Paro R (2011) Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet 12:123–135PubMedGoogle Scholar
  9. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martinez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Rao A et al (2013) Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500:222–226PubMedCentralPubMedGoogle Scholar
  10. Bosch M, Serras F, Martin-Blanco E, Baguna J (2005) JNK signaling pathway required for wound healing in regenerating Drosophila wing imaginal discs. Dev Biol 280:73–86PubMedGoogle Scholar
  11. Breiling A, Turner BM, Bianchi ME, Orlando V (2001) General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412:651–655PubMedGoogle Scholar
  12. Buchenau P, Hodgson J, Strutt H, Arndt-Jovin DJ (1998) The distribution of polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing. J Cell Biol 141:469–481PubMedCentralPubMedGoogle Scholar
  13. Butterworth CE Jr, Hatch KD, Gore H, Mueller H, Krumdieck CL (1982) Improvement in cervical dysplasia associated with folic acid therapy in users of oral contraceptives. Am J Clin Nutr 35:73–82PubMedGoogle Scholar
  14. Cao R, Tsukada Y, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20:845–854PubMedGoogle Scholar
  15. Caretti G, Palacios D, Sartorelli V, Puri PL (2011) Phosphoryl-EZH-ion. Cell Stem Cell 8:262–265PubMedCentralPubMedGoogle Scholar
  16. Cervera AM, Bayley JP, Devilee P, McCreath KJ (2009) Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol Cancer 8:89PubMedCentralPubMedGoogle Scholar
  17. Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, Ping B, Otte AP, Hung MC (2005) Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310:306–310PubMedGoogle Scholar
  18. Chen S, Bohrer LR, Rai AN, Pan Y, Gan L, Zhou X, Bagchi A, Simon JA, Huang H (2010) Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nat Cell Biol 12:1108–1114PubMedCentralPubMedGoogle Scholar
  19. Cheng NN, Sinclair DA, Campbell RB, Brock HW (1994) Interactions of polyhomeotic with Polycomb group genes of Drosophila melanogaster. Genetics 138:1151–1162PubMedCentralPubMedGoogle Scholar
  20. Cheng H, Deng Z, Wang Z, Zhang W, Su J (2012) MTHFR C677T polymorphisms are associated with aberrant methylation of the IGF-2 gene in transitional cell carcinoma of the bladder. J Biomed Res 26:77–83PubMedCentralPubMedGoogle Scholar
  21. Chervona Y, Arita A, Costa M (2012) Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 4:619–627PubMedCentralPubMedGoogle Scholar
  22. Chikanishi T, Fujiki R, Hashiba W, Sekine H, Yokoyama A, Kato S (2010) Glucose-induced expression of MIP-1 genes requires O-GlcNAc transferase in monocytes. Biochem Biophys Res Commun 394:865–870PubMedGoogle Scholar
  23. Chow CW, Davis RJ (2006) Proteins kinases: chromatin-associated enzymes? Cell 127:887–890PubMedGoogle Scholar
  24. Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, Leung IK, Li XS, Woon EC, Yang M et al (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12:463–469PubMedCentralPubMedGoogle Scholar
  25. Classen AK, Bunker BD, Harvey KF, Vaccari T, Bilder D (2009) A tumor suppressor activity of Drosophila Polycomb genes mediated by JAK-STAT signaling. Nat Genet 41:1150–1155PubMedCentralPubMedGoogle Scholar
  26. Cole BF, Baron JA, Sandler RS, Haile RW, Ahnen DJ, Bresalier RS et al (2007) Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. JAMA 297:2351-2359PubMedGoogle Scholar
  27. Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393S–2400SPubMedGoogle Scholar
  28. Deal RB, Henikoff JG, Henikoff S (2010) Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328:1161–1164PubMedCentralPubMedGoogle Scholar
  29. Dietzel S, Niemann H, Bruckner B, Maurange C, Paro R (1999) The nuclear distribution of Polycomb during Drosophila melanogaster development shown with a GFP fusion protein. Chromosoma 108:83–94PubMedGoogle Scholar
  30. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104:13056–13061PubMedCentralPubMedGoogle Scholar
  31. Dorighi KM, Tamkun JW (2013) The trithorax group proteins Kismet and ASH1 promote H3K36 dimethylation to counteract Polycomb group repression in Drosophila. Development 140:4182–4192PubMedGoogle Scholar
  32. Drobic B, Perez-Cadahia B, Yu J, Kung SK, Davie JR (2010) Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Res 38:3196–3208PubMedCentralPubMedGoogle Scholar
  33. Dyson MH, Thomson S, Inagaki M, Goto H, Arthur SJ, Nightingale K, Iborra FJ, Mahadevan LC (2005) MAP kinase-mediated phosphorylation of distinct pools of histone H3 at S10 or S28 via mitogen- and stress-activated kinase 1/2. J Cell Sci 118:2247–2259PubMedGoogle Scholar
  34. Eissenberg JC, Lee MG, Schneider J, Ilvarsonn A, Shiekhattar R, Shilatifard A (2007) The trithorax-group gene in Drosophila little imaginal discs encodes a trimethylated histone H3 Lys4 demethylase. Nat Struct Mol Biol 14:344–346PubMedGoogle Scholar
  35. Elderkin S, Maertens GN, Endoh M, Mallery DL, Morrice N, Koseki H, Peters G, Brockdorff N, Hiom K (2007) A phosphorylated form of Mel-18 targets the Ring1B histone H2A ubiquitin ligase to chromatin. Mol Cell 28:107–120PubMedGoogle Scholar
  36. Endoh M, Endo TA, Endoh T, Isono K, Sharif J, Ohara O, Toyoda T, Ito T, Eskeland R, Bickmore WA et al (2012) Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet 8:e1002774PubMedCentralPubMedGoogle Scholar
  37. Fardini Y, Dehennaut V, Lefebvre T, Issad T (2013) O-GlcNAcylation: a new cancer hallmark? Front Endocrinol (Lausanne) 4:99Google Scholar
  38. Ficz G, Heintzmann R, Arndt-Jovin DJ (2005) Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132:3963–3976PubMedGoogle Scholar
  39. Fisher D, Mechali M (2003) Vertebrate HoxB gene expression requires DNA replication. EMBO J 22:3737–3748PubMedCentralPubMedGoogle Scholar
  40. Follmer NE, Wani AH, Francis NJ (2012) A polycomb group protein is retained at specific sites on chromatin in mitosis. PLoS Genet 8:e1003135PubMedCentralPubMedGoogle Scholar
  41. Fonseca JP, Steffen PA, Muller S, Lu J, Sawicka A, Seiser C, Ringrose L (2012) In vivo Polycomb kinetics and mitotic chromatin binding distinguish stem cells from differentiated cells. Genes Dev 26:857–871PubMedCentralPubMedGoogle Scholar
  42. Forcales SV, Albini S, Giordani L, Malecova B, Cignolo L, Chernov A, Coutinho P, Saccone V, Consalvi S, Williams R et al (2012) Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J 31:301–316PubMedCentralPubMedGoogle Scholar
  43. Francis NJ, Kingston RE, Woodcock CL (2004) Chromatin compaction by a polycomb group protein complex. Science 306:1574–1577PubMedGoogle Scholar
  44. Francis NJ, Follmer NE, Simon MD, Aghia G, Butler JD (2009) Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro. Cell 137:110–122PubMedCentralPubMedGoogle Scholar
  45. Franke A, DeCamillis M, Zink D, Cheng N, Brock HW, Paro R (1992) Polycomb and polyhomeotic are constituents of a multimeric protein complex in chromatin of Drosophila melanogaster. EMBO J 11:2941–2950PubMedCentralPubMedGoogle Scholar
  46. Fujiki R, Chikanishi T, Hashiba W, Ito H, Takada I, Roeder RG, Kitagawa H, Kato S (2009) GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature 459:455–459PubMedGoogle Scholar
  47. Gambetta MC, Oktaba K, Muller J (2009) Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325:93–96PubMedGoogle Scholar
  48. Gauron C, Rampon C, Bouzaffour M, Ipendey E, Teillon J, Volovitch M, Vriz S (2013) Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Sci Rep 3:2084PubMedCentralPubMedGoogle Scholar
  49. Gehani SS, Agrawal-Singh S, Dietrich N, Christophersen NS, Helin K, Hansen K (2010) Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol Cell 39:886–900PubMedGoogle Scholar
  50. Ghoshal AK, Farber E (1984) The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens. Carcinogenesis 5:1367–1370PubMedGoogle Scholar
  51. Goke J, Chan YS, Yan J, Vingron M, Ng HH (2013) Genome-wide kinase-chromatin interactions reveal the regulatory network of ERK signaling in human embryonic stem cells. Mol Cell 50:844–855PubMedGoogle Scholar
  52. Gut P, Verdin E (2013) The nexus of chromatin regulation and intermediary metabolism. Nature 502:489–498PubMedGoogle Scholar
  53. Hallson G, Hollebakken RE, Li T, Syrzycka M, Kim I, Cotsworth S, Fitzpatrick KA, Sinclair DA, Honda BM (2012) dSet1 is the main H3K4 di- and tri-methyltransferase throughout Drosophila development. Genetics 190:91–100PubMedCentralPubMedGoogle Scholar
  54. Hanover JA, Krause MW, Love DC (2012) Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol 13:312–321PubMedGoogle Scholar
  55. Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A, Rappsilber J, Lerdrup M, Helin K (2008) A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10:1291–1300PubMedGoogle Scholar
  56. Hartman TJ, Woodson K, Stolzenberg-Solomon R, Virtamo J, Selhub J, Barrett MJ, Albanes D (2001) Association of the B-vitamins pyridoxal 5′-phosphate (B(6)), B(12), and folate with lung cancer risk in older men. Am J Epidemiol 153:688–694PubMedGoogle Scholar
  57. Hatano A, Matsumoto M, Higashinakagawa T, Nakayama KI (2010) Phosphorylation of the chromodomain changes the binding specificity of Cbx2 for methylated histone H3. Biochem Biophys Res Commun 397:93–99PubMedGoogle Scholar
  58. Heimburger DC, Alexander CB, Birch R, Butterworth CE Jr, Bailey WC, Krumdieck CL (1988) Improvement in bronchial squamous metaplasia in smokers treated with folate and vitamin B12. Report of a preliminary randomized, double-blind intervention trial. JAMA 259:1525–1530PubMedGoogle Scholar
  59. Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH, Mickey K, Voets O, Verrijzer CP, Shilatifard A (2012) Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 26:2604–2620PubMedCentralPubMedGoogle Scholar
  60. Hino S, Sakamoto A, Nagaoka K, Anan K, Wang Y, Mimasu S, Umehara T, Yokoyama S, Kosai K, Nakao M (2012) FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun 3:758PubMedCentralPubMedGoogle Scholar
  61. Hitchler MJ, Domann FE (2009) Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radic Biol Med 47:115–127PubMedCentralPubMedGoogle Scholar
  62. Hou H, Yu H (2010) Structural insights into histone lysine demethylation. Curr Opin Struct Biol 20:739–748PubMedCentralPubMedGoogle Scholar
  63. Ingham PW (1984) A gene that regulates the bithorax complex differentially in larval and adult cells of Drosophila. Cell 37:815–823PubMedGoogle Scholar
  64. Iovino N, Ciabrelli F, Cavalli G (2013) PRC2 controls Drosophila oocyte cell fate by repressing cell cycle genes. Dev Cell 26:431–439PubMedGoogle Scholar
  65. Issad T, Masson E, Pagesy P (2010) O-GlcNAc modification, insulin signaling and diabetic complications. Diabetes Metab 36:423–435PubMedGoogle Scholar
  66. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–168PubMedGoogle Scholar
  67. Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153:56–69PubMedCentralPubMedGoogle Scholar
  68. Kaneko S, Li G, Son J, Xu CF, Margueron R, Neubert TA, Reinberg D (2010) Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev 24:2615–2620PubMedCentralPubMedGoogle Scholar
  69. Kato I, Dnistrian AM, Schwartz M, Toniolo P, Koenig K, Shore RE, Akhmedkhanov A, Zeleniuch-Jacquotte A, Riboli E (1999) Serum folate, homocysteine and colorectal cancer risk in women: a nested case–control study. Br J Cancer 79:1917–1922PubMedCentralPubMedGoogle Scholar
  70. Kim J, Hwangbo J, Wong PK (2011) p38 MAPK-mediated Bmi-1 down-regulation and defective proliferation in ATM-deficient neural stem cells can be restored by Akt activation. PLoS One 6:e16615PubMedCentralPubMedGoogle Scholar
  71. Klebes A, Sustar A, Kechris K, Li H, Schubiger G, Kornberg TB (2005) Regulation of cellular plasticity in Drosophila imaginal disc cells by the Polycomb group, trithorax group and lama genes. Development 132:3753–3765PubMedGoogle Scholar
  72. Klein AM, Zaganjor E, Cobb MH (2013) Chromatin-tethered MAPKs. Curr Opin Cell Biol 25:272–277PubMedCentralPubMedGoogle Scholar
  73. Klymenko T, Papp B, Fischle W, Kocher T, Schelder M, Fritsch C, Wild B, Wilm M, Muller J (2006) A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev 20:1110–1122PubMedCentralPubMedGoogle Scholar
  74. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479PubMedGoogle Scholar
  75. Koshibu K, Graff J, Beullens M, Heitz FD, Berchtold D, Russig H, Farinelli M, Bollen M, Mansuy IM (2009) Protein phosphatase 1 regulates the histone code for long-term memory. J Neurosci 29:13079–13089PubMedGoogle Scholar
  76. Koshibu K, Graff J, Mansuy IM (2011) Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience 173:30–36PubMedGoogle Scholar
  77. Ladurner AG (2006) Rheostat control of gene expression by metabolites. Mol Cell 24:1–11PubMedGoogle Scholar
  78. Lagarou A, Mohd-Sarip A, Moshkin YM, Chalkley GE, Bezstarosti K, Demmers JA, Verrijzer CP (2008) dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. Genes Dev 22:2799–2810PubMedCentralPubMedGoogle Scholar
  79. Lanzuolo C, Orlando V (2012) Memories from the polycomb group proteins. Annu Rev Genet 46:561–589PubMedGoogle Scholar
  80. Lanzuolo C, Lo Sardo F, Diamantini A, Orlando V (2011) PcG complexes set the stage for epigenetic inheritance of gene silencing in early S phase before replication. PLoS Genet 7:e1002370PubMedCentralPubMedGoogle Scholar
  81. Lanzuolo C, Lo Sardo F, Orlando V (2012) Concerted epigenetic signatures inheritance at PcG targets through replication. Cell Cycle 11:1296–1300PubMedCentralPubMedGoogle Scholar
  82. Larsson J, Zhang J, Rasmuson-Lestander A (1996) Mutations in the Drosophila melanogaster gene encoding S-adenosylmethionine synthetase [corrected] suppress position-effect variegation. Genetics 143:887–896PubMedCentralPubMedGoogle Scholar
  83. Lau PN, Cheung P (2011) Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc Natl Acad Sci U S A 108:2801–2806PubMedCentralPubMedGoogle Scholar
  84. Lee N, Maurange C, Ringrose L, Paro R (2005) Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature 438:234–237PubMedGoogle Scholar
  85. Lee N, Zhang J, Klose RJ, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2007) The trithorax-group protein Lid is a histone H3 trimethyl-Lys4 demethylase. Nat Struct Mol Biol 14:341–343PubMedGoogle Scholar
  86. Lengsfeld BM, Berry KN, Ghosh S, Takahashi M, Francis NJ (2012) A Polycomb complex remains bound through DNA replication in the absence of other eukaryotic proteins. Sci Rep 2:661PubMedCentralPubMedGoogle Scholar
  87. Lightfoot TJ, Barrett JH, Bishop T, Northwood EL, Smith G, Wilkie MJ, Steele RJ, Carey FA, Key TJ, Wolf R et al (2008) Methylene tetrahydrofolate reductase genotype modifies the chemopreventive effect of folate in colorectal adenoma, but not colorectal cancer. Cancer Epidemiol Biomarkers Prev 17:2421–2430PubMedGoogle Scholar
  88. Liu JJ, Ward RL (2010) Folate and one-carbon metabolism and its impact on aberrant DNA methylation in cancer. Adv Genet 71:79–121PubMedGoogle Scholar
  89. Lo SM, Follmer NE, Lengsfeld BM, Madamba EV, Seong S, Grau DJ, Francis NJ (2012) A bridging model for persistence of a polycomb group protein complex through DNA replication in vitro. Mol Cell 46:784–796PubMedCentralPubMedGoogle Scholar
  90. Love DC, Ghosh S, Mondoux MA, Fukushige T, Wang P, Wilson MA, Iser WB, Wolkow CA, Krause MW, Hanover JA (2010) Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proc Natl Acad Sci U S A 107:7413–7418PubMedCentralPubMedGoogle Scholar
  91. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–478PubMedCentralPubMedGoogle Scholar
  92. Martinez AM, Schuettengruber B, Sakr S, Janic A, Gonzalez C, Cavalli G (2009) Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling. Nat Genet 41:1076–1082PubMedGoogle Scholar
  93. Mikol YB, Hoover KL, Creasia D, Poirier LA (1983) Hepatocarcinogenesis in rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis 4:1619–1629PubMedGoogle Scholar
  94. Mills AA (2010) Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat Rev Cancer 10:669–682PubMedGoogle Scholar
  95. Mimura I, Tanaka T, Wada Y, Kodama T, Nangaku M (2011) Pathophysiological response to hypoxia—from the molecular mechanisms of malady to drug discovery: epigenetic regulation of the hypoxic response via hypoxia-inducible factor and histone modifying enzymes. J Pharmacol Sci 115:453–458PubMedGoogle Scholar
  96. Miyagishima H, Isono K, Fujimura Y, Iyo M, Takihara Y, Masumoto H, Vidal M, Koseki H (2003) Dissociation of mammalian Polycomb-group proteins, Ring1B and Rae28/Ph1, from the chromatin correlates with configuration changes of the chromatin in mitotic and meiotic prophase. Histochem Cell Biol 120:111–119PubMedGoogle Scholar
  97. Mohd-Sarip A, Lagarou A, Doyen CM, van der Knaap JA, Aslan U, Bezstarosti K, Yassin Y, Brock HW, Demmers JA, Verrijzer CP (2012) Transcription-independent function of Polycomb group protein PSC in cell cycle control. Science 336:744–747PubMedGoogle Scholar
  98. Muller J, Verrijzer P (2009) Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr Opin Genet Dev 19:150–158PubMedGoogle Scholar
  99. Nacerddine K, Beaudry JB, Ginjala V, Westerman B, Mattiroli F, Song JY, van der Poel H, Ponz OB, Pritchard C, Cornelissen-Steijger P et al (2012) Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer. J Clin Invest 122:1920–1932PubMedCentralPubMedGoogle Scholar
  100. Nakamura S, Oshima M, Yuan J, Saraya A, Miyagi S, Konuma T, Yamazaki S, Osawa M, Nakauchi H, Koseki H et al (2012) Bmi1 confers resistance to oxidative stress on hematopoietic stem cells. PLoS One 7:e36209PubMedCentralPubMedGoogle Scholar
  101. Ng J, Hart CM, Morgan K, Simon JA (2000) A Drosophila ESC-E(Z) protein complex is distinct from other polycomb group complexes and contains covalently modified ESC. Mol Cell Biol 20:3069–3078PubMedCentralPubMedGoogle Scholar
  102. Niessen HE, Demmers JA, Voncken JW (2009) Talking to chromatin: post-translational modulation of polycomb group function. Epigenetics Chromatin 2:10PubMedCentralPubMedGoogle Scholar
  103. Noguchi K, Shiurba R, Higashinakagawa T (2002) Nuclear translocation of mouse Polycomb M33 protein in regenerating liver. Biochem Bioph Res Co 291:508–515Google Scholar
  104. Oktaba K, Gutierrez L, Gagneur J, Girardot C, Sengupta AK, Furlong EE, Muller J (2008) Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Dev Cell 15:877–889PubMedGoogle Scholar
  105. Owusu-Ansah E, Banerjee U (2009) Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461:537–541PubMedGoogle Scholar
  106. Palacios D, Mozzetta C, Consalvi S, Caretti G, Saccone V, Proserpio V, Marquez VE, Valente S, Mai A, Forcales SV et al (2010) TNF/p38alpha/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 7:455–469PubMedCentralPubMedGoogle Scholar
  107. Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, Skotte J, Wutz A, Porse B, Jensen ON et al (2010) Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 38:4958–4969PubMedCentralPubMedGoogle Scholar
  108. Petruk S, Sedkov Y, Johnston DM, Hodgson JW, Black KL, Kovermann SK, Beck S, Canaani E, Brock HW, Mazo A (2012) TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150:922–933PubMedCentralPubMedGoogle Scholar
  109. Pogribny IP, Tryndyak VP, Muskhelishvili L, Rusyn I, Ross SA (2007) Methyl deficiency, alterations in global histone modifications, and carcinogenesis. J Nutr 137:216S–222SPubMedGoogle Scholar
  110. Prickaerts P, Niessen HE, Mouchel-Vielh E, Dahlmans VE, van den Akker GG, Geijselaers C, Adriaens ME, Spaapen F, Takihara Y, Rapp UR et al (2012) MK3 controls Polycomb target gene expression via negative feedback on ERK. Epigenetics Chromatin 5:12PubMedCentralPubMedGoogle Scholar
  111. Prinz-Langenohl R, Fohr I, Pietrzik K (2001) Beneficial role for folate in the prevention of colorectal and breast cancer. Eur J Nutr 40:98–105PubMedGoogle Scholar
  112. Probst AV, Dunleavy E, Almouzni G (2009) Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10:192–206PubMedGoogle Scholar
  113. Ramet M, Lanot R, Zachary D, Manfruelli P (2002) JNK signaling pathway is required for efficient wound healing in Drosophila. Dev Biol 241:145–156PubMedGoogle Scholar
  114. Rampalli S, Li L, Mak E, Ge K, Brand M, Tapscott SJ, Dilworth FJ (2007) p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation. Nat Struct Mol Biol 14:1150–1156PubMedGoogle Scholar
  115. Rao PS, Satelli A, Zhang S, Srivastava SK, Srivenugopal KS, Rao US (2009) RNF2 is the target for phosphorylation by the p38 MAPK and ERK signaling pathways. Proteomics 9:2776–2787PubMedCentralPubMedGoogle Scholar
  116. Reynolds N, Salmon-Divon M, Dvinge H, Hynes-Allen A, Balasooriya G, Leaford D, Behrens A, Bertone P, Hendrich B (2012) NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO J 31:593–605PubMedCentralPubMedGoogle Scholar
  117. Reytor E, Perez-Miguelsanz J, Alvarez L, Perez-Sala D, Pajares MA (2009) Conformational signals in the C-terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution. FASEB J 23:3347–3360PubMedGoogle Scholar
  118. Rossetto D, Avvakumov N, Cote J (2012) Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics 7:1098–1108PubMedCentralPubMedGoogle Scholar
  119. Rudenko A, Bennett D, Alphey L (2004) PP1beta9C interacts with Trithorax in Drosophila wing development. Dev Dyn 231:336–341PubMedGoogle Scholar
  120. Rudolph T, Yonezawa M, Lein S, Heidrich K, Kubicek S, Schafer C, Phalke S, Walther M, Schmidt A, Jenuwein T et al (2007) Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol Cell 26:103–115PubMedGoogle Scholar
  121. Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25:15–30PubMedGoogle Scholar
  122. Sadhu MJ, Guan Q, Li F, Sales-Lee J, Iavarone AT, Hammond MC, Cande WZ, Rine J (2013) Nutritional control of epigenetic processes in yeast and human cells. Genetics 195:831–844PubMedGoogle Scholar
  123. Sassone-Corsi P, Mizzen CA, Cheung P, Crosio C, Monaco L, Jacquot S, Hanauer A, Allis CD (1999) Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285:886–891PubMedGoogle Scholar
  124. Sawarkar R, Paro R (2010) Interpretation of developmental signaling at chromatin: the Polycomb perspective. Dev Cell 19:651–661PubMedGoogle Scholar
  125. Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, Wilm M, Muir TW, Muller J (2010) Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465:243–247PubMedCentralPubMedGoogle Scholar
  126. Schuettengruber B, Ganapathi M, Leblanc B, Portoso M, Jaschek R, Tolhuis B, van Lohuizen M, Tanay A, Cavalli G (2009) Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS Biol 7:e13PubMedGoogle Scholar
  127. Schuettengruber B, Martinez AM, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12:799–814PubMedGoogle Scholar
  128. Schwartz YB, Kahn TG, Stenberg P, Ohno K, Bourgon R, Pirrotta V (2010) Alternative epigenetic chromatin states of polycomb target genes. PLoS Genet 6:e1000805PubMedCentralPubMedGoogle Scholar
  129. Schwermann J, Rathinam C, Schubert M, Schumacher S, Noyan F, Koseki H, Kotlyarov A, Klein C, Gaestel M (2009) MAPKAP kinase MK2 maintains self-renewal capacity of haematopoietic stem cells. EMBO J 28:1392–1406PubMedCentralPubMedGoogle Scholar
  130. Secombe J, Li L, Carlos L, Eisenman RN (2007) The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev 21:537–551PubMedCentralPubMedGoogle Scholar
  131. Sen N, Satija YK, Das S (2011) PGC-1alpha, a key modulator of p53, promotes cell survival upon metabolic stress. Mol Cell 44:621–634PubMedGoogle Scholar
  132. Shaw T, Martin P (2009) Epigenetic reprogramming during wound healing: loss of polycomb-mediated silencing may enable upregulation of repair genes. EMBO Rep 10:881–886PubMedCentralPubMedGoogle Scholar
  133. Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81:65–95PubMedCentralPubMedGoogle Scholar
  134. Simon JA, Kingston RE (2013) Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 49:808–824PubMedCentralPubMedGoogle Scholar
  135. Simone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL (2004) p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet 36:738–743PubMedGoogle Scholar
  136. Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, Thurston A, Huntley JF, Rees WD, Maloney CA et al (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A 104:19351–19356PubMedCentralPubMedGoogle Scholar
  137. Sinclair DA, Syrzycka M, Macauley MS, Rastgardani T, Komljenovic I, Vocadlo DJ, Brock HW, Honda BM (2009) Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc Natl Acad Sci U S A 106:13427–13432PubMedCentralPubMedGoogle Scholar
  138. Skora AD, Spradling AC (2010) Epigenetic stability increases extensively during Drosophila follicle stem cell differentiation. Proc Natl Acad Sci U S A 107:7389–7394PubMedCentralPubMedGoogle Scholar
  139. Smith BC, Denu JM (2009) Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta 1789:45–57PubMedCentralPubMedGoogle Scholar
  140. Smith EH, Janknecht R, Maher LJ 3rd (2007) Succinate inhibition of alpha-ketoglutarate-dependent enzymes in a yeast model of paraganglioma. Hum Mol Genet 16:3136–3148PubMedGoogle Scholar
  141. Smith ER, Lee MG, Winter B, Droz NM, Eissenberg JC, Shiekhattar R, Shilatifard A (2008) Drosophila UTX is a histone H3 Lys27 demethylase that colocalizes with the elongating form of RNA polymerase II. Mol Cell Biol 28:1041–1046PubMedCentralPubMedGoogle Scholar
  142. Soloaga A, Thomson S, Wiggin GR, Rampersaud N, Dyson MH, Hazzalin CA, Mahadevan LC, Arthur JS (2003) MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J 22:2788–2797PubMedCentralPubMedGoogle Scholar
  143. Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856PubMedGoogle Scholar
  144. Steffen PA, Fonseca JP, Ganger C, Dworschak E, Kockmann T, Beisel C, Ringrose L (2013) Quantitative in vivo analysis of chromatin binding of Polycomb and Trithorax group proteins reveals retention of ASH1 on mitotic chromatin. Nucleic Acids Res 41:5235–5250PubMedCentralPubMedGoogle Scholar
  145. Sustar A, Schubiger G (2005) A transient cell cycle shift in Drosophila imaginal disc cells precedes multipotency. Cell 120:383–393PubMedGoogle Scholar
  146. Sustar A, Bonvin M, Schubiger M, Schubiger G (2011) Drosophila twin spot clones reveal cell division dynamics in regenerating imaginal discs. Dev Biol 356:576–587PubMedCentralPubMedGoogle Scholar
  147. Tausendschon M, Dehne N, Brune B (2011) Hypoxia causes epigenetic gene regulation in macrophages by attenuating Jumonji histone demethylase activity. Cytokine 53:256–262PubMedGoogle Scholar
  148. Teperino R, Schoonjans K, Auwerx J (2010) Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab 12:321–327PubMedCentralPubMedGoogle Scholar
  149. Thompson CB (2009) Metabolic enzymes as oncogenes or tumor suppressors. N Engl J Med 360:813–815PubMedCentralPubMedGoogle Scholar
  150. Tian X, Diaz FJ (2013) Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Dev Biol 376:51–61PubMedCentralPubMedGoogle Scholar
  151. Tie F, Siebold AP, Harte PJ (2005) The N-terminus of Drosophila ESC mediates its phosphorylation and dimerization. Biochem Biophys Res Commun 332:622–632PubMedGoogle Scholar
  152. Tie F, Banerjee R, Stratton CA, Prasad-Sinha J, Stepanik V, Zlobin A, Diaz MO, Scacheri PC, Harte PJ (2009) CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 136:3131–3141PubMedCentralPubMedGoogle Scholar
  153. Tie F, Banerjee R, Conrad PA, Scacheri PC, Harte PJ (2012) Histone demethylase UTX and chromatin remodeler BRM bind directly to CBP and modulate acetylation of histone H3 lysine 27. Mol Cell Biol 32:2323–2334PubMedCentralPubMedGoogle Scholar
  154. Tiwari VK, Stadler MB, Wirbelauer C, Paro R, Schubeler D, Beisel C (2012) A chromatin-modifying function of JNK during stem cell differentiation. Nat Genet 44:94–100Google Scholar
  155. Tolhuis B, Muijrers I, de Wit E, Teunissen H, Talhout W, van Steensel B, van Lohuizen M(2006) Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat Genet 38:694–699PubMedGoogle Scholar
  156. Toyota M, Suzuki H (2010) Epigenetic drivers of genetic alterations. Adv Genet 70:309–323PubMedGoogle Scholar
  157. Vermeulen L, Vanden Berghe W, Beck IM, De Bosscher K, Haegeman G (2009) The versatile role of MSKs in transcriptional regulation. Trends Biochem Sci 34:311–318PubMedGoogle Scholar
  158. Vicent GP, Ballare C, Nacht AS, Clausell J, Subtil-Rodriguez A, Quiles I, Jordan A, Beato M (2006) Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol Cell 24:367–381PubMedGoogle Scholar
  159. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874PubMedGoogle Scholar
  160. Vocadlo DJ (2012) O-GlcNAc processing enzymes: catalytic mechanisms, substrate specificity, and enzyme regulation. Curr Opin Chem Biol 16:488–497PubMedGoogle Scholar
  161. Voncken JW, Schweizer D, Aagaard L, Sattler L, Jantsch MF, van Lohuizen M (1999) Chromatin-association of the Polycomb group protein BMI1 is cell cycle-regulated and correlates with its phosphorylation status. J Cell Sci 112:4627–4639PubMedGoogle Scholar
  162. Voncken JW, Niessen H, Neufeld B, Rennefahrt U, Dahlmans V, Kubben N, Holzer B, Ludwig S, Rapp UR (2005) MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1. J Biol Chem 280:5178–5187PubMedGoogle Scholar
  163. Wainfan E, Poirier LA (1992) Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res 52:2071s–2077sPubMedGoogle Scholar
  164. Walport LJ, Hopkinson RJ, Schofield CJ (2012) Mechanisms of human histone and nucleic acid demethylases. Curr Opin Chem Biol 16:525–534PubMedGoogle Scholar
  165. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878PubMedGoogle Scholar
  166. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300PubMedCentralPubMedGoogle Scholar
  167. Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG (2006) Maternal methyl supplements increase offspring DNA methylation at Axin Fused. Genesis 44:401–406PubMedGoogle Scholar
  168. Wei Y, Chen YH, Li LY, Lang J, Yeh SP, Shi B, Yang CC, Yang JY, Lin CY, Lai CC et al (2011) CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat Cell Biol 13:87–94PubMedCentralPubMedGoogle Scholar
  169. Wu SC, Zhang Y (2011) Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of enhancer of zeste 2 (Ezh2) regulates its stability. J Biol Chem 286:28511–28519PubMedCentralPubMedGoogle Scholar
  170. Wu HA, Balsbaugh JL, Chandler H, Georgilis A, Zullow H, Shabanowitz J, Hunt DF, Gil J, Peters G, Bernstein E (2013) MAP kinase signaling mediates phosphorylation of Polycomb ortholog Cbx7. J Biol Chem 288:36398–36408PubMedGoogle Scholar
  171. Yang X, Zhang F, Kudlow JE (2002) Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110:69–80PubMedGoogle Scholar
  172. Yang SH, Sharrocks AD, Whitmarsh AJ (2013) MAP kinase signalling cascades and transcriptional regulation. Gene 513:1–13PubMedGoogle Scholar
  173. Yin R, Mao SQ, Zhao B, Chong Z, Yang Y, Zhao C, Zhang D, Huang H, Gao J, Li Z et al (2013) Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc 135:10396–10403PubMedGoogle Scholar
  174. Zhang SM, Willett WC, Selhub J, Hunter DJ, Giovannucci EL, Holmes MD, Colditz GA, Hankinson SE (2003) Plasma folate, vitamin B6, vitamin B12, homocysteine, and risk of breast cancer. J Natl Cancer Inst 95:373-380PubMedGoogle Scholar
  175. Zhang W, Deng H, Bao X, Lerach S, Girton J, Johansen J, Johansen KM (2006) The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila. Development 133:229–235PubMedGoogle Scholar
  176. Zhang H, Wang Z, Zhang Z (2013) PP1alpha, PP1beta and Wip-1 regulate H4S47 phosphorylation and deposition of histone H3 variant H3.3. Nucleic Acids Res 41:8085–8093PubMedCentralPubMedGoogle Scholar
  177. Zhao R, Nakamura T, Fu Y, Lazar Z, Spector DL (2011) Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat Cell Biol 13:1295–1304PubMedCentralPubMedGoogle Scholar
  178. Zhong S, Jansen C, She QB, Goto H, Inagaki M, Bode AM, Ma WY, Dong Z (2001) Ultraviolet B-induced phosphorylation of histone H3 at serine 28 is mediated by MSK1. J Biol Chem 276:33213–33219PubMedGoogle Scholar
  179. Zhou X, Sun H, Chen H, Zavadil J, Kluz T, Arita A, Costa M (2010) Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Res 70:4214–4221PubMedCentralPubMedGoogle Scholar
  180. Ziech D, Franco R, Pappa A, Panayiotidis MI (2011) Reactive oxygen species (ROS)–induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res 711:167–173PubMedGoogle Scholar
  181. Zink B, Paro R (1989) In vivo binding pattern of a trans-regulator of homoeotic genes in Drosophila melanogaster. Nature 337:468–471PubMedGoogle Scholar
  182. Zippo A, De Robertis A, Serafini R, Oliviero S (2007) PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9:932–944PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Ludwig Maximilians University Munich, Faculty of BiologyPlanegg-MartinsriedGermany

Personalised recommendations