Skip to main content

Advertisement

Log in

Reciprocal disruption of neuronal signaling and Aβ production mediated by extrasynaptic NMDA receptors: a downward spiral

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

It is becoming increasingly clear that aberrant neuronal activity can be the cause and the result of amyloid beta production. Synaptic activation facilitates non-amyloidogenic processing of amyloid precursor protein (APP) and cell survival, primarily through synaptic NMDA receptors (NMDARs) and perhaps specifically those containing GluN2A-subunits. In contrast, extrasynaptic and GluN2B-containing NMDARs promote beta-secretase cleavage of APP into amyloid-beta (Aβ). The opposing nature of these NMDAR populations is reflected in their control over cell survival and death pathways. Subtle changes in glutamate homeostasis may shift the balance between these pathways and could play a role in Alzheimer’s disease (AD). Indeed, Aβ production, regional loss of brain connectivity and neurodegeneration correlate with neuronal activity in AD patients. From another perspective, Aβ oligomers (Aβo) alter neuronal signaling through several mechanisms involving NMDARs and intracellular calcium mishandling. While Aβo affect multiple receptors, GluN2B-NMDARs have emerged as primary mediators of altered synaptic plasticity and neurotoxicity. Memantine and its successor, NitroMemantine, are efficient at blocking or reversing the deleterious actions of Aβo largely due to their selectivity for extrasynaptic NMDARs. Recently, Aβo were shown to trigger astrocytic release of glutamate to the extrasynaptic space where it activates NMDARs to promote further Aβ production and synaptic depression. Combined with the reciprocal regulation between neuronal activity and Aβ production, extrasynaptic glutamate release adds to a maladaptive model and ultimately results in synaptotoxicity and neurodegeneration of AD. Extrasynaptic NMDAR antagonists remain as a promising therapeutic avenue by interfering with this cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Atri A, Molinuevo JL, Lemming O, Wirth Y, Pulte I, Wilkinson D (2013) Memantine in patients with Alzheimer’s disease receiving donepezil: new analyses of efficacy and safety for combination therapy. Alzheimers Res Ther 5:6–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barry AE, Klyubin I, Mc Donald JM, Mably AJ, Farrell MA, Scott M, Walsh DM, Rowan MJ (2011) Alzheimer’s disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J Neurosci 31:7259–7263

    Article  CAS  PubMed  Google Scholar 

  • Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee J-M, Holtzman DM (2011) Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nature 14:750–756

    CAS  Google Scholar 

  • Bero AW, Bauer AQ, Stewart FR, White BR, Cirrito JR, Raichle ME, Culver JP, Holtzman DM (2012) Bidirectional relationship between functional connectivity and amyloid-β deposition in mouse brain. J Neurosci 32:4334–4340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bordji K, Becerril-Ortega J, Nicole O, Buisson A (2010) Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ß production. J Neurosci 30:15927–15942

    Article  CAS  PubMed  Google Scholar 

  • Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709–7717

    Article  CAS  PubMed  Google Scholar 

  • Chatzistavraki M, Kyratzi E, Fotinopoulou A, Papazafiri P, Efthimiopoulos S (2013) Downregulation of AβPP enhances both calcium content of endoplasmic reticulum and acidic stores and the dynamics of store operated calcium channel activity. J Alzheimers Dis 34:407–415

    CAS  PubMed  Google Scholar 

  • Chen HS, Pellegrini JW, Aggarwal SK, Lei SZ, Warach S, Jensen FE, Lipton SA (1992) Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 12:4427–4436

    CAS  PubMed  Google Scholar 

  • Cheung K-H, Shineman D, Müller M, Cárdenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VM-Y, Foskett JK (2008) Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58:871–883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM, Mennerick S, Holtzman DM (2005) Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48:913–922

    Article  CAS  PubMed  Google Scholar 

  • Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    Article  CAS  PubMed  Google Scholar 

  • Colvin RA, Bennett JW, Colvin SL, Allen RA, Martinez J, Miner GD (1991) Na+/Ca2+ exchange activity is increased in Alzheimer’s disease brain tissues. Brain Res 543:139–147

    Article  CAS  PubMed  Google Scholar 

  • Decker H, Jürgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, Klein WL, Epstein AL, De Felice FG, Jerusalinsky D, Ferreira ST (2010) N-methyl-D-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-β peptide oligomers. J Neurochem 115:1520–1529

    Article  CAS  PubMed  Google Scholar 

  • Dolev I, Fogel H, Milshtein H, Berdichevsky Y, Lipstein N, Brose N, Gazit N, Slutsky I (2013) Spike bursts increase amyloid-β 40/42 ratio by inducing a presenilin-1 conformational change. Nat Neurosci 16:587–595

    Article  CAS  PubMed  Google Scholar 

  • Ferreira IL, Bajouco LM, Mota SI, Auberson YP, Oliveira CR, Rego AC (2012) Amyloid beta peptide 1-42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium 51:95–106

    Article  CAS  PubMed  Google Scholar 

  • Ferreiro E, Oliveira CR, Pereira C (2004) Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide. J Neurosci Res 76:872–880

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100:10417–10422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green KN, LaFerla FM (2008) Linking calcium to Abeta and Alzheimer’s disease. Neuron 59:190–194

    Article  CAS  PubMed  Google Scholar 

  • Grynspan F, Griffin WR, Cataldo A, Katayama S, Nixon RA (1997) Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer’s disease. Brain Res 763:145–158

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    CAS  PubMed  Google Scholar 

  • Hardy J (2006) Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J Alzheimers Dis 9:151–153

    CAS  PubMed  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  PubMed  Google Scholar 

  • Hoey SE, Williams RJ, Perkinton MS (2009) Synaptic NMDA receptor activation stimulates alpha-secretase amyloid precursor protein processing and inhibits amyloid-beta production. J Neurosci 29:4442–4460

    Article  CAS  PubMed  Google Scholar 

  • Hoozemans JJMJ, Veerhuis RR, Rozemuller JMJ, Eikelenboom PP (2011) Soothing the inflamed brain: effect of non-steroidal anti-inflammatory drugs on Alzheimer’s disease pathology. CNS Neurol Disord Drug Targets 10:57–67

    Article  CAS  PubMed  Google Scholar 

  • Hu N-W, Klyubin I, Anwyl R, Anwy R, Rowan MJ (2009) GluN2B subunit-containing NMDA receptor antagonists prevent Abeta-mediated synaptic plasticity disruption in vivo. Proc Natl Acad Sci USA 106:20504–20509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE, Southan CD, Ryan DM, Smith TS, Simmons DL, Walsh FS, Dingwall C, Christie G (1999) Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 14:419–427

    Article  CAS  PubMed  Google Scholar 

  • Kabogo D, Rauw G, Amritraj A, Baker G, Kar S (2010) ß-amyloid-related peptides potentiate K+-evoked glutamate release from adult rat hippocampal slices. Neurobiol Aging 31:1164–1172

    Article  CAS  PubMed  Google Scholar 

  • Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R (2003) APP processing and synaptic function. Neuron 37:925–937

    Article  CAS  PubMed  Google Scholar 

  • Kervern M, Angeli A, Nicole O, Léveillé F, Parent B, Villette V, Buisson A, Dutar P (2012) Selective impairment of some forms of synaptic plasticity by oligomeric amyloid-β peptide in the mouse hippocampus: implication of extrasynaptic NMDA receptors. J Alzheimers Dis 32:183–196

    CAS  PubMed  Google Scholar 

  • Kessels HW, Nabavi S, Malinow R (2013) Metabotropic NMDA receptor function is required for β-amyloid-induced synaptic depression. Proc Natl Acad Sci USA 110:4033–4038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khachaturian ZS (1987) Hypothesis on the regulation of cytosol calcium concentration and the aging brain. Neurobiol Aging 8:345–346

    Article  CAS  PubMed  Google Scholar 

  • Kirischuk S, Verkhratsky A (1996) Calcium homeostasis in aged neurones. Life Sci 59:451–459

    Article  CAS  PubMed  Google Scholar 

  • Kirischuk S, Pronchuk N, Verkhratsky A (1992) Measurements of intracellular calcium in sensory neurons of adult and old rats. Neuroscience 50:947–951

    Article  CAS  PubMed  Google Scholar 

  • Kotermanski SE, Johnson JW (2009) Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J Neurosci 29:2774–2779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larson M, Sherman MA, Amar F, Nuvolone M, Schneider JA, Bennett DA, Aguzzi A, Lesné SE (2012) The complex PrP(c)-Fyn couples human oligomeric Aβ with pathological tau changes in Alzheimer’s disease. J Neurosci 32:16857–71a

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leissring MA, Paul BA, Parker I, Cotman CW, LaFerla FM (1999) Alzheimer’s presenilin-1 mutation potentiates inositol 1,4,5-trisphosphate-mediated calcium signaling in Xenopus oocytes. J Neurochem 72:1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Lesné S, Ali C, Gabriel C, Croci N, MacKenzie ET, Glabe CG, Plotkine M, Marchand-Verrecchia C, Vivien D, Buisson A (2005) NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production. J Neurosci 25:9367–9377

    Article  PubMed  Google Scholar 

  • Leveille F, Gaamouch El F, Gouix E, Lecocq M, Lobner D, Nicole O, Buisson A (2008) Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J 22:4258–4271

    Article  CAS  PubMed  Google Scholar 

  • Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D (2009) Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62:788–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ (2011) Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci 31:6627–6638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S-J, Gasperini R, Foa L, Small DH (2010) Amyloid-beta decreases cell-surface AMPA receptors by increasing intracellular calcium and phosphorylation of GluR2. J Alzheimers Dis 21:655–666

    PubMed  Google Scholar 

  • Lopez JR, Lyckman A, Oddo S, LaFerla FM, Querfurth HW, Shtifman A (2008) Increased intraneuronal resting [Ca2+] in adult Alzheimer’s disease mice. J Neurochem 105:262–271

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie IRI, Miller LAL (1993) Senile plaques in temporal lobe epilepsy. Acta Neuropathol 87:504–510

    Article  Google Scholar 

  • Marcello E, Gardoni F, Mauceri D, Romorini S, Jeromin A, Epis R, Borroni B, Cattabeni F, Sala C, Padovani A, Di Luca M (2007) Synapse-associated protein-97 mediates alpha-secretase ADAM10 trafficking and promotes its activity. J Neurosci 27:1682–1691

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Coria H, Green KN, Billings LM, Kitazawa M, Albrecht M, Rammes G, Parsons CG, Gupta S, Banerjee P, LaFerla FM (2010) Memantine improves cognition and reduces Alzheimer’s-like neuropathology in transgenic mice. Am J Pathol 176:870–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McLean CAC, Cherny RAR, Fraser FWF, Fuller SJS, Smith MJM, Beyreuther KK, Bush AIA, Masters CLC (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    Article  CAS  PubMed  Google Scholar 

  • Miñano-Molina AJ, España J, Martín E, Barneda-Zahonero B, Fadó R, Solé M, Trullás R, Saura CA, Rodríguez-Alvarez J (2011) Soluble oligomers of amyloid-β peptide disrupt membrane trafficking of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor contributing to early synapse dysfunction. J Biol Chem 286:27311–27321

    Article  PubMed Central  PubMed  Google Scholar 

  • Moon M, Hong HS, Nam DW, Baik SH, Song H, Kook S-Y, Kim YS, Lee J, Mook-Jung I (2012) Intracellular amyloid-β accumulation in calcium-binding protein-deficient neurons leads to amyloid-β plaque formation in animal model of Alzheimer’s disease. J Alzheimers Dis 29:615–628

    CAS  PubMed  Google Scholar 

  • Oulès B, Del Prete D, Greco B, Zhang X, Lauritzen I, Sevalle J, Moreno S, Paterlini-Bréchot P, Trebak M, Checler F, Benfenati F, Chami M (2012) Ryanodine receptor blockade reduces amyloid-β load and memory impairments in Tg2576 mouse model of Alzheimer disease. J Neurosci 32:11820–11834

    Article  PubMed Central  PubMed  Google Scholar 

  • Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, Ho KO, Yu G-Q, Kreitzer A, Finkbeiner S, Noebels JL, Mucke L (2007) Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55:697–711

    Article  CAS  PubMed  Google Scholar 

  • Paula-Lima AC, Adasme T, SanMartín C, Sebollela A, Hetz C, Carrasco MA, Ferreira ST, Hidalgo C (2011) Amyloid β-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF. Antioxid Redox Signal 14:1209–1223

    Article  CAS  PubMed  Google Scholar 

  • Querfurth HW, Selkoe DJ (1994) Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 33:4550–4561

    Article  CAS  PubMed  Google Scholar 

  • Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR, Bateman RJ, Holtzman DM (2012) Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med 4:150–122

    Article  Google Scholar 

  • Rönicke R, Mikhaylova M, Rönicke S, Meinhardt J, Schröder UH, Fändrich M, Reiser G, Kreutz MR, Reymann KG (2011) Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors. Neurobiol Aging 32:2219–2228

    Article  PubMed  Google Scholar 

  • Sepulveda FJ, Parodi J, Peoples RW, Opazo C, Aguayo LG (2010) Synaptotoxicity of Alzheimer beta amyloid can be explained by its membrane perforating property. PLoS ONE 5:e11820

    Article  PubMed Central  PubMed  Google Scholar 

  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875

    Article  CAS  PubMed  Google Scholar 

  • Soriano FX, Hardingham GE (2007) Compartmentalized NMDA receptor signalling to survival and death. J Physiol Lond 584:381–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stutzmann GE (2004) Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J Neurosci 24:508–513

    Article  CAS  PubMed  Google Scholar 

  • Stutzmann GE, Smith I, Caccamo A, Oddo S, LaFerla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci 26:5180–5189

    Article  CAS  PubMed  Google Scholar 

  • Tackenberg C, Grinschgl S, Trutzel A, Santuccione AC, Frey MC, Konietzko U, Grimm J, Brandt R, Nitsch RM (2013) NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss. Cell Death Dis 4:e608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Talantova M et al (2013) Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA 110:E2518–E2527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamburri A, Dudilot A, Licea S, Bourgeois C, Boehm J (2012) NMDA-Receptor activation but not ion flux is required for amyloid-beta induced synaptic depression. PLoS ONE 8:e65350–e65350

    Article  Google Scholar 

  • Tampellini D, Rahman N, Lin MT, Capetillo-Zarate E, Gouras GK (2011) Impaired β-amyloid secretion in Alzheimer’s disease pathogenesis. J Neurosci 31:15384–15390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Texidó L, Martín-Satué M, Alberdi E, Solsona C, Matute C (2011) Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium 49:184–190

    Article  PubMed  Google Scholar 

  • Ulrich JD, Burchett JM, Restivo JL, Schuler DR, Verghese PB, Mahan TE, Landreth GE, Castellano JM, Jiang H, Cirrito JR, Holtzman DM (2013) In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis. Mol Neurodegener 8:13–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vanhoutte P, Bading H (2003) Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opin Neurobiol 13:366–371

    Article  CAS  PubMed  Google Scholar 

  • Verges DK, Restivo JL, Goebel WD, Holtzman DM, Cirrito JR (2011) Opposing synaptic regulation of amyloid-β metabolism by NMDA receptors in vivo. J Neurosci 31:11328–11337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verkhratsky A, Olabarria M, Noristani HN, Yeh C-Y, Rodriguez JJ (2010) Astrocytes in Alzheimer’s disease. Neurotherapeutics 7:399–412

    Article  CAS  PubMed  Google Scholar 

  • Walsh DM, Hartley DM, Condron MM, Selkoe DJ, Teplow DB (2001) In vitro studies of amyloid beta-protein fibril assembly and toxicity provide clues to the aetiology of Flemish variant (Ala692-Gly) Alzheimer’s disease. Biochem J 355:869–877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Yamaguchi H, Lai FA, Shen J (2013) Presenilins regulate calcium homeostasis and presynaptic function via ryanodine receptors in hippocampal neurons. Proc Natl Acad Sci USA 110:15091–15096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, Saunders AJ, Ding K, Frosch MP, Tanzi RE, Kim TW (2000) Presenilin-mediated modulation of capacitative calcium entry. Neuron 27:561–572

    Article  CAS  PubMed  Google Scholar 

  • Zeiger W, Vetrivel KS, Buggia-Prévot V, Nguyen PD, Wagner SL, Villereal ML, Thinakaran G (2013) Ca2+ influx through store-operated Ca2+ channels reduces Alzheimer disease β-amyloid peptide secretion. J Biol Chem 288:26955–26966

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fondation Neurodis, by the Institut National pour la Santé et la Recherche Médicale (INSERM) and the Agence Nationale de la Recherche (ANR MALAAD program MALZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Buisson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rush, T., Buisson, A. Reciprocal disruption of neuronal signaling and Aβ production mediated by extrasynaptic NMDA receptors: a downward spiral. Cell Tissue Res 356, 279–286 (2014). https://doi.org/10.1007/s00441-013-1789-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1789-1

Keywords