Skip to main content

Advertisement

Log in

Lentiviral vectors enveloped with rabies virus glycoprotein can be used as a novel retrograde tracer to assess nerve recovery in rat sciatic nerve injury models

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Retrograde labeling has become the new “gold standard” technique to evaluate the recovery of injured peripheral nerves. In this study, lentiviral vectors with rabies virus glycoprotein envelop (RABV-G-LV) and RFP genes are injected into gastrocnemius muscle to determine the location of RFP in sciatic nerves. We then examine RFP expression in the L4-S1 spinal cord and sensory dorsal root ganglia and in the rat sciatic nerve, isolated Schwann cells, viral dose to expression relationship and the use of RABV-G-LV as a retrograde tracer for regeneration in the injured rat sciatic nerve. VSV-G-LV was used as control for viral envelope specificity. Results showed that RFP were positive in the myelin sheath and lumbar spinal motorneurons of the RABV-G-LV group. RFP gene could be detected both in myelinated Schwann cells and lumbar spinal motor neurons in the RABV-G-LV group. Schwann cells isolated from the RABV-G-LV injected postnatal Sprague Dawley rats were also RFP-gene positive. All the results obtained in the VSV-G-LV group were negative. Distribution of RFP was unaltered and the level of RFP expression increasing with time progressing. RABV-G-LV could assess the amount of functional regenerating nerve fibers two months post-operation in the four models. This method offers an easy-operated and consistent standardized approach for retrograde labeling regenerating peripheral nerves, which may be a significant supplement for the previous RABV-G-LV-related retrograde labeling study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Beier KT, Saunders A, Oldenburg IA, Miyamichi K, Akhtar N, Luo L, Whelan SP, Sabatini B, Cepko CL (2011) Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proc Natl Acad Sci U S A 108:15414–15419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bentivoglio M, Kuypers HG, Catsman-Berrevoets CE, Loewe H, Dann O (1980) Two new fluorescent retrograde neuronal tracers which are transported over long distances. Neurosci Lett 18:25–30

    Article  CAS  PubMed  Google Scholar 

  • Bharos TB, Kuypers HG, Lemon RN, Muir RB (1981) Divergent collaterals from deep cerebellar neurons to thalamus and tectum, and to medulla oblongata and spinal cord: retrograde fluorescent and electrophysiological studies. Exp Brain Res 42:399–410

    CAS  PubMed  Google Scholar 

  • Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A 90:8033–8037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi D, Li D, Raisman G (2002) Fluorescent retrograde neuronal tracers that label the rat facial nucleus: a comparison of Fast Blue, Fluoro-ruby, Fluoro-emerald, Fluoro-Gold and DiI. J Neurosci Methods 117:167–172

    Article  CAS  PubMed  Google Scholar 

  • Etessami R, Conzelmann KK, Fadai-Ghotbi B, Natelson B, Tsiang H, Ceccaldi PE (2000) Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J Gen Virol 81:2147–2153

    CAS  PubMed  Google Scholar 

  • Federici T, Kutner R, Zhang XY, Kuroda H, Tordo N, Boulis NM, Reiser J (2009) Comparative analysis of HIV-1-based lentiviral vectors bearing lyssavirus glycoproteins for neuronal gene transfer. Genet Vaccines Ther 7:1

    Article  PubMed Central  PubMed  Google Scholar 

  • Garrett WT, McBride RL, Williams JK Jr, Feringa ER (1991) Fluoro-Gold's toxicity makes it inferior to True Blue for long-term studies of dorsal root ganglion neurons and motoneurons. Neurosci Lett 128:137–139

    Article  CAS  PubMed  Google Scholar 

  • Gastka M, Horvath J, Lentz TL (1996) Rabies virus binding to the nicotinic acetylcholine receptor alpha subunit demonstrated by virus overlay protein binding assay. J Gen Virol 77(Pt 10):2437–2440

    Article  CAS  PubMed  Google Scholar 

  • Gatzinsky KP, Berthold CH (1990) Lysosomal activity at nodes of Ranvier during retrograde axonal transport of horseradish peroxidase in alpha-motor neurons of the cat. J Neurocytol 19:989–1002

    Article  CAS  PubMed  Google Scholar 

  • Gatzinsky KP, Persson GH, Berthold CH (1997) Removal of retrogradely transported material from rat lumbosacral alpha-motor axons by paranodal axon-Schwann cell networks. Glia 20:115–126

    Article  CAS  PubMed  Google Scholar 

  • Hanham CA, Zhao F, Tignor GH (1993) Evidence from the anti-idiotypic network that the acetylcholine receptor is a rabies virus receptor. J Virol 67:530–542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi A, Moradzadeh A, Hunter DA, Kawamura DH, Puppala VK, Tung THH, Mackinnon SE, Myckatyn TM (2007) Retrograde labeling in peripheral nerve research: It is not all black and white. J Reconstr Microsurg 23:381–389

    Article  PubMed  Google Scholar 

  • Jiang M, Zhuge X, Yang Y, Gu X, Ding F (2009) The promotion of peripheral nerve regeneration by chitooligosaccharides in the rat nerve crush injury model. Neurosci Lett 454:239–243

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Inoue K, Kobayashi K, Yasoshima Y, Miyachi S, Inoue S, Hanawa H, Shimada T, Takada M (2007) Efficient gene transfer via retrograde transport in rodent and primate brains using a human immunodeficiency virus type 1-based vector pseudotyped with rabies virus glycoprotein. Hum Gene Ther 18:1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Kobayashi K, Inoue K, Kuramochi M, Okada T, Yaginuma H, Morimoto K, Shimada T, Takada M (2011a) A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 22:197–206

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Kuramochi M, Kobayashi K, Fukabori R, Okada K, Uchigashima M, Watanabe M, Tsutsui Y (2011b) Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual discrimination. J Neurosci 31:17169–17179

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Kuramochi M, Takasumi K, Kobayashi K, Inoue K, Takahara D, Hitoshi S, Ikenaka K, Shimada T, Takada M (2011c) Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum Gene Ther 22:1511–1523

    Article  CAS  PubMed  Google Scholar 

  • Kobbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S (2000) Current concepts in neuroanatomical tracing. Prog Neurobiol 62:327–351

    Article  CAS  PubMed  Google Scholar 

  • Kristens K (1970) Transport of fluorescent protein tracer in peripheral nerves. Acta Neuropathol 16:293

    Article  Google Scholar 

  • Kristens K, Olsson Y (1971) Retrograde axonal transport of protein. Brain Res 29:363

    Article  Google Scholar 

  • Lentz TL (1990) Rabies virus binding to an acetylcholine receptor alpha-subunit peptide. J Mol Recognit 3:82–88

    Article  CAS  PubMed  Google Scholar 

  • Mason A, Larkman A, Eldridge JL (1988) A method for intracellular injection of horseradish peroxidase by pressure. J Neurosci Methods 22:181–187

    Article  CAS  PubMed  Google Scholar 

  • Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL, Carter EE, Barber RD, Baban DF, Kingsman SM, Kingsman AJ, O'Malley K, Mitrophanous KA (2001) Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 10:2109–2121

    Article  CAS  PubMed  Google Scholar 

  • Mentis GZ, Gravell M, Hamilton R, Shneider NA, O'Donovan MJ, Schubert M (2006) Transduction of motor neurons and muscle fibers by intramuscular injection of HIV-1-based vectors pseudotyped with select rabies virus glycoproteins. J Neurosci Methods 157:208–217

    Article  CAS  PubMed  Google Scholar 

  • Mitrophanous K, Yoon S, Rohll J, Patil D, Wilkes F, Kim V, Kingsman S, Kingsman A, Mazarakis N (1999) Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther 6:1808–1818

    Article  CAS  PubMed  Google Scholar 

  • Muik A, Kneiske I, Werbizki M, Wilflingseder D, Giroglou T, Ebert O, Kraft A, Dietrich U, Zimmer G, Momma S, von Laer D (2011) Pseudotyping vesicular stomatitis virus with lymphocytic choriomeningitis virus glycoproteins enhances infectivity for glioma cells and minimizes neurotropism. J Virol 85:5679–5684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naumann T, Hartig W, Frotscher M (2000) Retrograde tracing with Fluoro-Gold: different methods of tracer detection at the ultrastructural level and neurodegenerative changes of back-filled neurons in long-term studies. J Neurosci Methods 103:11–21

    Article  CAS  PubMed  Google Scholar 

  • Novikova L, Novikov L, Kellerth JO (1997) Persistent neuronal labeling by retrograde fluorescent tracers: A comparison between Fast Blue, Fluoro-Gold and various dextran conjugates. J Neurosci Methods 74:9–15

    Article  CAS  PubMed  Google Scholar 

  • Popratiloff AS, Neiss WF, Skouras E, Streppel M, Guntinas-Lichius O, Angelov DN (2001) Evaluation of muscle re-innervation employing pre- and post-axotomy injections of fluorescent retrograde tracers. Brain Res Bull 54:115–123

    Article  CAS  PubMed  Google Scholar 

  • Puigdellivol-Sanchez A, Prats-Galino A, Ruano-Gil D, Molander C (1998) Efficacy of the fluorescent dyes Fast Blue, Fluoro-Gold, and Diamidino Yellow for retrograde tracing to dorsal root ganglia after subcutaneous injection. J Neurosci Methods 86:7–16

    Article  CAS  PubMed  Google Scholar 

  • Puigdellivol-Sanchez A, Prats-Galino A, Ruano-Gil D, Molander C (2000) Fast blue and diamidino yellow as retrograde tracers in peripheral nerves: efficacy of combined nerve injection and capsule application to transected nerves in the adult rat. J Neurosci Methods 95:103–110

    Article  CAS  PubMed  Google Scholar 

  • Puigdellivol-Sanchez A, Prats-Galino A, Ruano-Gil D, Molander C (2003) Persistence of tracer in the application site—a potential confounding factor in nerve regeneration studies. J Neurosci Methods 127:105–110

    Article  PubMed  Google Scholar 

  • Puigdellivol-Sanchez A, Valero-Cabre A, Prats-Galino A, Navarro X, Molander C (2002) On the use of fast blue, fluoro-gold and diamidino yellow for retrograde tracing after peripheral nerve injury: uptake, fading, dye interactions, and toxicity. J Neurosci Methods 115:115–127

    Article  CAS  PubMed  Google Scholar 

  • Schlegel R, Tralka TS, Willingham MC, Pastan I (1983) Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding site? Cell 32:639–646

    Article  CAS  PubMed  Google Scholar 

  • Schmued LC, Fallon JH (1986) Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res 377:147–154

    Article  CAS  PubMed  Google Scholar 

  • Schutte M, Hoskins SG (1993) Ipsilaterally projecting retinal ganglion cells in Xenopus laevis: an HRP study. J Comp Neurol 331:482–494

    Article  CAS  PubMed  Google Scholar 

  • Skouras E, Ozsoy U, Sarikcioglu L, Angelov DN (2011) Intrinsic and therapeutic factors determining the recovery of motor function after peripheral nerve transection. Ann Anat 193:286–303

    Article  PubMed  Google Scholar 

  • Thoulouze MI, Lafage M, Schachner M, Hartmann U, Cremer H, Lafon M (1998) The neural cell adhesion molecule is a receptor for rabies virus. J Virol 72:7181–7190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tuffereau C, Benejean J, Blondel D, Kieffer B, Flamand A (1998) Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. EMBO J 17:7250–7259

    Article  CAS  PubMed  Google Scholar 

  • Ugolini G (2010) Advances in viral transneuronal tracing. J Neurosci Methods 194:2–20

    Article  PubMed  Google Scholar 

  • van Neerven SG, Bozkurt A, O'Dey DM, Scheffel J, Boecker AH, Stromps JP, Dunda S, Brook GA, Pallua N (2012) Retrograde tracing and toe spreading after experimental autologous nerve transplantation and crush injury of the sciatic nerve: a descriptive methodological study. J Brachial Plexus Peripher Nerv Inj 7:5

    Article  Google Scholar 

  • Wei Y, Gong K, Zheng Z, Wang A, Ao Q, Gong Y, Zhang X (2011) Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. J Mater Sci Mater Med 22:1947–1964

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Zhou J, Zheng Z, Wang A, Ao Q, Gong Y, Zhang X (2009) An improved method for isolating Schwann cells from postnatal rat sciatic nerves. Cell Tissue Res 337:361–369

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81272787), Zhou Dafu Medical Research Fund (202836019-03) and the National Natural Science Foundation of Beijing (7122027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Ao or Guihuai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Y., Gong, K., Ao, Q. et al. Lentiviral vectors enveloped with rabies virus glycoprotein can be used as a novel retrograde tracer to assess nerve recovery in rat sciatic nerve injury models. Cell Tissue Res 355, 255–266 (2014). https://doi.org/10.1007/s00441-013-1756-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1756-x

Keywords

Navigation