Skip to main content

Advertisement

Log in

Expression of Ins1 and Ins2 genes in mouse fetal liver

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

A possible cure for diabetes is explored by using non-pancreatic cells such as fetal hepatocytes. The expression of insulin and transcription factors for insulin is investigated in mouse fetal liver. We detected mRNAs for insulin I (Ins1) and insulin II (Ins2) and proinsulin- and mature insulin-positive cells in mouse fetal liver by reverse transcription plus the polymerase chain reaction and immunohistochemistry. Glucagon, somatostatin and pancreatic polypeptide were not expressed throughout development. Mouse Ins2 and Ins1 promoters were transiently activated in mouse fetal hepatocytes of embryonic days 13.5 and 16.5, respectively. Pancreatic and duodenal homeobox 1 (Pdx1) mRNA was not expressed during development of the liver. In contrast, mRNAs and proteins of neurogenic differentiation (NeuroD)/β cell E-box transactivator 2 (Beta2) and v-maf musculoaponeurotic fibrosarcoma oncogene homolog (MafA) were almost simultaneously expressed with insulin genes in the liver. Ins2 and Ins1 promoters were activated in hepatoma cells by the transfection of the expression vector for NeuroD/Beta2 alone and by the combination of NeuroD/Beta2 and MafA, respectively. These results indicate that the expression of NeuroD/Beta2 and MafA is linked temporally with the transcription of Ins2 and Ins1 genes in mouse fetal liver and suggest the potential usage of fetal hepatocytes to make insulin-producing β cells by introducing transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe T, Unno M, Onogawa T, Tokui T, Kondo TN, Nakagomi R, Adachi H, Fujiwara K, Okabe M, Suzuki T, Nunoki K, Sato E, Kakyo M, Nishio T, Sugita J, Asano N, Tanemoto M, Seki M, Date F, Ono K, Kondo Y, Shiiba K, Suzuki M, Ohtani H, Shimosegawa T, Iinuma K, Nagura H, Ito S, Matsuno S (2001) LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology 120:1689–1699

    Article  CAS  PubMed  Google Scholar 

  • Akiyama T, Takasawa S, Nata K, Kobayashi S, Abe M, Shervani NJ, Ikeda T, Nakagawa K, Unno M, Matsuno S, Okamoto H (2001) Activation of Reg gene, a gene for insulin-producing β-cell regeneration: poly(ADP-ribose)polymerase binds Reg promoter and regulates the transcription by autopoly(ADP-ribosyl)ation. Proc Natl Acad Sci U S A 98:48–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alarcón C, Serna J, Pérez-Villamil B, de Pablo F (1998) Synthesis and differentially regulated processing of proinsulin in developing chick pancreas, liver and neuroretina. FEBS Lett 436:361–366

    Article  PubMed  Google Scholar 

  • Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, Benvenisti-Zarum L, Meivar-Levy I, Ferber S (2003) Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 278:31950–31957

    Article  CAS  PubMed  Google Scholar 

  • Bell GI, Seino S (1990) The organization and structure of insulin genes. In: Okamoto H (ed) Molecular biology of the islets of Langerhans. Cambridge University Press, Cambridge, pp 9–25

    Chapter  Google Scholar 

  • Chapple RH, Tizioto PC, Wells KD, Givan SA, Kim J-W, McKay SD, Schnabel RD, Taylor JF (2013) Characterization of the rat developmental liver transcriptome. Physiol Genomics 45:301–311

    Article  CAS  PubMed  Google Scholar 

  • Deltour L, Leduque P, Blume N, Madsen O, Dubois P, Jami J, Bucchini D (1993) Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo. Proc Natl Acad Sci U S A 90:527–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doliba NM, Fenner D, Zelent B, Bass J, Sarabu R, Matschinsky FM (2012) Repair of diverse diabetic defects of β-cells in man and mouse by pharmacological glucokinase activation. Diabetes Obes Metab 14 (Suppl 3):109–119

    Article  CAS  PubMed  Google Scholar 

  • Duvillié B, Cordonnier N, Deltour L, Dandoy-Dron F, Itier J-M, Monthioux E, Jami J, Joshi RL, Bucchini D (1997) Phenotypic alterations in insulin-deficient mutant mice. Proc Natl Acad Sci U S A 94:5137–5140

    Article  PubMed Central  PubMed  Google Scholar 

  • Giddings SJ, Carnaghi LR (1988) The two nonallelic rat insulin mRNAs and pre-mRNAs are regulated coordinately in vivo. J Biol Chem 263:3845–3849

    CAS  PubMed  Google Scholar 

  • Giddings SJ, Carnaghi L (1989) Rat insulin II gene expression by extraplacental membranes. A non-pancreatic source for fetal insulin. J Biol Chem 264:9462–9469

    CAS  PubMed  Google Scholar 

  • Giddings SJ, Carnaghi LR (1990) Selective expression and developmental regulation of the ancestral rat insulin II gene in fetal liver. Mol Endocrinol 4:1363–1369

    Article  CAS  PubMed  Google Scholar 

  • Giddings SJ, King CD, Harman KW, Flood JF, Carnaghi LR (1994) Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nat Genet 6:310–313

    Article  CAS  PubMed  Google Scholar 

  • Glick E, Leshkowitz D, Walker MD (2000) Transcription factor BETA2 acts cooperatively with E2A and PDX1 to activate the insulin gene promoter. J Biol Chem 275:2199–2204

    Article  CAS  PubMed  Google Scholar 

  • Goya L, de la Puente A, Ramos S, Martín MA, Escrivá F, Pascual-Leone AM (1999) Regulation of insulin–like growth factor-I and –II by glucose in primary cultures of fetal rat hepatocytes. J Biol Chem 274:24633–24640

    Article  CAS  PubMed  Google Scholar 

  • Ikeda T, Takasawa S, Noguchi N, Nata K, Yamauchi A, Takahashi I, Yoshikawa T, Sugawara A, Yonekura H, Okamoto H (2012) Identification of a major enzyme for the synthesis and hydrolysis of cyclic ADP-ribose in amphibian cells and evolutional conservation of the enzyme from human to invertebrate. Mol Cell Biochem 366:69–80

    Article  CAS  PubMed  Google Scholar 

  • Im S-S, Kim S-Y, Kim H-I, Ahn Y-H (2006) Transcriptional regulation of glucose sensors in pancreatic beta cells and liver. Curr Diabetes Rev 2:11–18

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Okamoto H (1980) Translational control of proinsulin synthesis by glucose. Nature 283:100–102

    Article  CAS  PubMed  Google Scholar 

  • Kajihara M, Sone H, Amemiya M, Katoh Y, Isogai M, Shimano H, Yamada N, Takahashi S (2003) Mouse MafA, homologue of zebrafish somite Maf 1, contributes to the specific transcriptional activity through the insulin promoter. Biochem Biophys Res Commun 312:831–842

    Article  CAS  PubMed  Google Scholar 

  • Koguma T, Takasawa S, Tohgo A, Karasawa T, Furuya Y, Yonekura H, Okamoto H (1994) Cloning and characterization of cDNA encoding rat ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (homologue to human CD38) from islets of Langerhans. Biochim Biophys Acta 1223:160–162

    Article  CAS  PubMed  Google Scholar 

  • Koranyi L, Permutt MA, Chirgwin JM, Giddings SJ (1989) Proinsulin I and II gene expression in inbred mouse strains. Mol Endocrinol 3:1895–1902

    Article  CAS  PubMed  Google Scholar 

  • Loemedico P, Rosenthal N, Efstratidadis A, Gilbert W, Kolodner R, Tizard R (1979) The structure and evolution of the two nonallelic rat preproinsulin genes. Cell 18:545–558

    Article  Google Scholar 

  • Moates JM, Nanda S, Cissell MA, Tsai MJ, Stein R (2003) BETA2 activates transcription from the upstream glucokinase gene promoter in islet β-cells and gut endocrine cells. Diabetes 52:403–408

    Article  CAS  PubMed  Google Scholar 

  • Muglia L, Locker J (1984) Extrapancreatic insulin gene expression in the fetal rat. Proc Natl Acad Sci U S A 81:3635–3639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa K, Takasawa S, Nata K, Yamauchi A, Itaya-Hironaka A, Ota H, Yoshimoto K, Sakuramoto-Tsuchida S, Miyaoka T, Takeda M, Unno M, Okamoto H (2013) Prevention of Reg I-induced β-cell apoptosis by IL-6/dexamethasone through activation of HGF gene regulation. Biochim Biophys Acta 1833:2988–2995

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa T, Takasawa S, Noguchi N, Nata K, Tohgo A, Mori M, Nakagawara K, Akiyama T, Ikeda T, Yamauchi A, Takahashi I, Yoshikawa T, Okamoto H (2005) Genomic organization, chromosomal localization, and promoter of human gene for FK506-binding protein 12.6. Gene 360:55–64

    Article  CAS  PubMed  Google Scholar 

  • Naya FJ, Stellrecht CM, Tsai MJ (1995) Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 9:1009–1019

    Article  CAS  PubMed  Google Scholar 

  • Ohlsson H, Karlsson K, Edlund T (1993) IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J 12:4251–4259

    CAS  PubMed  Google Scholar 

  • Okamoto H (1985) Molecular basis of experimental diabetes: degeneration, oncogenesis, and regeneration of pancreatic B-cells of islets of Langerhans. Bioessays 2:15–21

    Article  CAS  Google Scholar 

  • Okamoto H, Takasawa S (2002) Recent advances in the Okamoto model: the CD38-cyclic ADP-ribose signal system and the regenerating gene protein (Reg)-Reg receptor system in β–cells. Diabetes 51 (Suppl 3):S462–S473

    Article  CAS  PubMed  Google Scholar 

  • Okamoto H, Takasawa S, Tohgo A, Nata K, Kato I, Noguchi N (1997) Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38: inhibition of hydrolysis by ATP and physiological significance. Methods Enzymol 280:306–318

    Article  CAS  PubMed  Google Scholar 

  • Olbrot M, Rud J, Moss LG, Sharma A (2002) Identification of β-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc Natl Acad Sci U S A 99:6737–6742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ota H, Tamaki S, Itaya-Hironaka A, Yamauchi A, Sakuramoto-Tsuchida S, Morioka T, Takasawa S, Kimura H (2012) Attenuation of glucose-induced insulin secretion by intermittent hypoxia via down-regulation of CD38. Life Sci 90:206–211

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Villamil B, de la Rosa EJ, Morales AV, de Pablo F (1994) Developmentally regulated expression of the preproinsulin gene in the chicken embryo during gastrulation and neurulation. Endocrinology 135:2342–2350

    PubMed  Google Scholar 

  • Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA (2003) Insulin staining of ES cell progeny from insulin uptake. Science 299:363

    PubMed  Google Scholar 

  • Serrano J, Bevins CL, Young SW, de Pablo F (1998) Insulin gene expression in chicken ontogeny: pancreatic, extrapancreatic, and prepancreatic. Dev Biol 132:410–418

    Article  Google Scholar 

  • Shuldiner AR, de Pablo F, Moore CA, Roth J (1991) Two nonallelic insulin genes in Xenopus laevis are expressed differentially during neurulation in prepancreatic embryos. Proc Natl Acad Sci U S A 88:7679–7683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spaventi R, Antica M, Pavelíc K (1990) Insulin and insulin-like growth factor I (IGF I) in early mouse embryogenesis. Development 108:491–495

    CAS  PubMed  Google Scholar 

  • Suzuki A, Zheng Y, Kondo R, Kusakabe M, Takada Y, Fukao K, Nakauchi H, Taniguchi H (2000) Flow-cytometric separation and enrichment of hepatic progenitor cells in the developing mouse liver. Hepatology 32:1230–1239

    Article  CAS  PubMed  Google Scholar 

  • Takasawa S, Nata K, Yonekura H, Okamoto H (1993) Cyclic ADP-ribose in insulin secretion from pancreatic β cells. Science 259:370–373

    Article  CAS  PubMed  Google Scholar 

  • Takasawa S, Akiyama T, Nata K, Kuroki M, Tohgo A, Noguchi N, Kobayashi S, Kato I, Katada T, Okamoto H (1998) Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Ca2+ mobilization in normal and diabetic β-cells. J Biol Chem 273:2497–2500

    Article  CAS  PubMed  Google Scholar 

  • Takasawa S, Ikeda T, Akiyama T, Nata K, Nakagawa K, Shervani NJ, Noguchi N, Murakami-Kawaguchi S, Yamauchi A, Takahashi I, Tomioka-Kumagai T, Okamoto H (2006) Cyclin D1 activation through ATF-2 in Reg-induced pancreatic β-cell regeneration. FEBS Lett 580:585–591

    Article  CAS  PubMed  Google Scholar 

  • Takasawa S, Kuroki M, Nata K, Noguchi N, Ikeda T, Yamauchi A, Ota H, Itaya-Hironaka A, Sakuramoto-Tsuchida S, Takahashi I, Yoshikawa T, Shimosegawa T, Okamoto H (2010) A novel ryanodine receptor expressed in pancreatic islets by alternative splicing from type 2 ryanodine receptor gene. Biochem Biophys Res Commun 397:140–145

    Article  CAS  PubMed  Google Scholar 

  • Tzur G, Israel A, Levy A, Benjamin H, Meiri E, Shufaro Y, Meir K, Khvalevsky E, Spector Y, Rojansky N, Bentwich Z, Reubinoff BE, Galun E (2009) Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development. PLoS One 4:e7511

    Article  PubMed Central  PubMed  Google Scholar 

  • Unno M, Nata K, Noguchi N, Narushima Y, Akiyama T, Ikeda T, Nakagawa K, Takasawa S, Okamoto H (2002) Production and characterization of Reg knockout mice: reduced proliferation of pancreatic β-cells in Reg knockout mice. Diabetes 51 (Suppl 3):S478–S483

    Article  CAS  PubMed  Google Scholar 

  • Wilson ME, Scheel D, German MS (2003) Gene expression cascades in pancreatic development. Mech Dev 120:65–80

    Article  CAS  PubMed  Google Scholar 

  • Wentworth BM, Schaefer IM, Villa-Komaroff L, Chirgwin JM (1986) Characterization of the two nonallelic genes encoding mouse preproinsulin. J Mol Evol 23:305–312

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi A, Takahashi I, Takasawa S, Nata K, Noguchi N, Ikeda T, Yoshikawa T, Shervani NJ, Suzuki I, Uruno A, Unno M, Okamoto H, Sugawara A (2009) Thiazolidinediones inhibit REG Iα gene transcription in gastrointestinal cancer cells. Biochem Biophys Res Commun 379:743–748

    Google Scholar 

  • Yoshimoto K, Fujimoto T, Itaya-Hironaka A, Miyaoka T, Sakuramoto-Tsuchida S, Yamauchi A, Takeda M, Kasai T, Nakagawara KI, Nonomura A, Takasawa S (2013) Involvement of autoimmunity to REG, a regeneration factor, in patients with primary Sjögren’s syndrome. Clin Exp Immunol 174:1-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Yuya Shichinohe for technical assistance and Mr. Brent Bell for critical reading of the manuscript. The present study is partial academic fulfillment for Thesis by S. M.-K. of Medical Science at Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Takasawa.

Additional information

T.O. was the recipient of a fellowship from the Japan Society for Promotion of Science. This work was supported in part by Grants-in-Aid for Scientific Research from Ministry of Education, Culture, Sports, Science and Technology, Japan and from the Japan Science and Technology Agency (JST).

The authors declare no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 15.5 kb)

(JPEG 131 kb)

High resolution image (TIFF 5643 kb)

ESM 2

(DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murakami-Kawaguchi, S., Takasawa, S., Onogawa, T. et al. Expression of Ins1 and Ins2 genes in mouse fetal liver. Cell Tissue Res 355, 303–314 (2014). https://doi.org/10.1007/s00441-013-1741-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1741-4

Keywords

Navigation