Skip to main content
Log in

Mitochondrial DNA content of mature spermatozoa and oocytes in the genetic model Drosophila

  • Short Communication
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Although crucial to the success of fertilization and embryogenesis, little is known about the mitochondrial DNA (mtDNA) content of mature spermatozoa and oocytes across taxa and across different fertilization systems. Oocytes are assumed to hold a large population of mtDNAs that populate emerging cells during early embryogenesis, whereas spermatozoa harbor only a limited pool of mtDNAs that is believed to sustain functionality but fails to contribute paternal mtDNA to the zygote. Recent work suggests that mature sperm of the genetic model Drosophila melanogaster lack mtDNA, questioning the significance of zygotic mechanisms for the selective elimination of paternal mtDNA and their necessity for fertilization success. This finding further contradicts previous observations of the inheritance of paternal mtDNA in drosophilids. Using quantitative polymerase chain reaction, we estimate the mtDNA content of several laboratory strains of D. melanogaster and D. simulans to shed light on this discrepancy and to describe the mitochondrial/mtDNA load of gametes within this system. These measurements led to an average estimate of 22.91±4.61 mtDNA molecules/copies per spermatozoon across both species and to 1.07E+07±2.71E+06 molecules/copies per oocyte for D. simulans. As a consequence, the ratio of paternal and maternal mtDNA in the zygote was estimated at 1:4.65E+05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Aoyagi N, Wassarman DA (2000) Genes encoding Drosophila melanogaster RNA polymerase II general transcription factors: diversity in TFIIA and TFIID components contributes to gene-specific transcriptional regulation. J Cell Biol 150:F45–F50

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Roote J (2007) Maintenance of a Drosophila laboratory: general procedures. CSH Protoc 2007:pdb.ip35

    PubMed  Google Scholar 

  • Clancy DJ (2008) Variation in mitochondrial genotype has substantial lifespan effects which may be modulated by nuclear background. Aging Cell 7:795–804

    Article  PubMed  CAS  Google Scholar 

  • Dean MD, Ballard KJ, Glass A, Ballard JWO (2003) Influence of two Wolbachia strains on population structure of East African Drosophila simulans. Genetics 165:1959–1969

    PubMed  CAS  Google Scholar 

  • DeLuca SZ, O’Farrell PH (2012) Barriers to male transmission of mitochondrial DNA in sperm development. Dev Cell 22:660–668

    Article  PubMed  CAS  Google Scholar 

  • Dorus S, Busby SA, Gerike U, Shabanowitz J, Hunt DF, Karr TL (2006) Genomic and functional evolution of the Drosophila melanogaster sperm proteome. Nat Genet 38:1440–1445

    Article  PubMed  CAS  Google Scholar 

  • Dumollard R, Duchen M, Carroll J (2007) The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 77:21–49

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Jiang L, Bhasin S, Khan SM, Swerdlow RH (2009) DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 9:261–265

    Article  PubMed  CAS  Google Scholar 

  • Immler S, Pitnick S, Parker GA, Durrant KL, Lupold S, Calhim S, Birkhead TR (2011) Resolving variation in the reproductive tradeoff between sperm size and number. Proc Natl Acad Sci USA 108:5325–5330

    Article  PubMed  CAS  Google Scholar 

  • Karr TL (1991) Intracellular sperm/egg interactions in Drosophila: a three-dimensional structural analysis of a paternal product in the developing egg. Mech Dev 34:101–111

    Article  PubMed  CAS  Google Scholar 

  • Kondo R, Satta Y, Matsuura ET, Ishiwa H, Takahata N, Chigusa SI (1990) Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics 126:657–663

    PubMed  CAS  Google Scholar 

  • Lüpold S, Manier MK, Ala-Honkola O, Belote JM, Pitnick S (2011) Male Drosophila melanogaster adjust ejaculate size based on female mating status, fecundity, and age. Behav Ecol 22:184–191

    Article  Google Scholar 

  • Matsuura ET, Fukuda H, Chigusa SI (1991) Mitochondrial DNA heteroplasmy maintained in natural populations of Drosophila simulans in Reunion. Genet Res 57:123–126

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T, Koizumi M, Hayashi S (2011) Sustained elongation of sperm tail promoted by local remodeling of giant mitochondria in Drosophila. Curr Biol 21:805–814

    Article  PubMed  CAS  Google Scholar 

  • Nunes MDS, Dolezal M, Schlötterer C (2013) Extensive paternal mtDNA leakage in natural populations of Drosophila melanogaster. Mol Ecol 22:2106–2117

    Article  PubMed  CAS  Google Scholar 

  • Perotti ME (1973) The mitochondrial derivative of the spermatozoon of Drosophila before and after fertilization. J Ultrastruct Res 44:181–198

    Article  PubMed  CAS  Google Scholar 

  • Phillips DM (1970) Insect sperm: their structure and morphogenesis. J Cell Biol 44:243–277

    Article  PubMed  CAS  Google Scholar 

  • Pitnick S, Karr TL (1998) Paternal products and by-products in Drosophila development. Proc R Soc Lond [Biol] 265:821–826

    Article  CAS  Google Scholar 

  • PMB (2000) Converter: weight moles (for nucleic acids). Institute of Gene Biology, Moscow

    Google Scholar 

  • Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A (2009) Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update 15:553–572

    Article  PubMed  CAS  Google Scholar 

  • Sherengul W, Kondo R, Matsuura ET (2006) Analysis of paternal transmission of mitochondrial DNA in Drosophila. Genes Genet Syst 81:399–404

    Article  PubMed  CAS  Google Scholar 

  • Snook RR, Cleland SY, Wolfner MF, Karr TL (2000) Offsetting effects of Wolbachia infection and heat shock on sperm production in Drosophila simulans: analyses of fecundity, fertility and accessory gland proteins. Genetics 155:167–178

    PubMed  CAS  Google Scholar 

  • Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A, Larsson NG (2008) Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol 6:e10

    Article  PubMed  Google Scholar 

  • Tokuyasu KT (1975) Dynamics of spermiogenesis in Drosophila melanogaster. VI. Significance of “onion” nebenkern formation. J Ultrastruct Res 53:93–112

    Article  PubMed  CAS  Google Scholar 

  • Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA (2010) The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod 83:52–62

    Article  PubMed  CAS  Google Scholar 

  • Werner M, Simmons LW (2008) Insect sperm motility. Biol Rev 83:191–208

    Article  PubMed  Google Scholar 

  • Wolff JN, Gemmell NJ (2008a) Estimating mitochondrial DNA content of chinook salmon spermatozoa using quantitative real-time polymerase chain reaction. Biol Reprod 79:247–252

    Article  PubMed  CAS  Google Scholar 

  • Wolff JN, Gemmell NJ (2008b) Lost in the zygote: the dilution of paternal mtDNA upon fertilization. Heredity (Edinb) 101:429–434

    Article  CAS  Google Scholar 

  • Wolff JN, White DJ, Woodhams M, White HE, Gemmell NJ (2011) The strength and timing of the mitochondrial bottleneck in salmon suggests a conserved mechanism in vertebrates. PLoS One 6:e20522

    Article  PubMed  CAS  Google Scholar 

  • Wolff JN, Nafisinia M, Sutovsky P, Ballard JWO (2013) Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of Drosophila simulans. Heredity (Edinb) 110:57–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the laboratory for valuable feedback on the manuscript. We also thank Carolina Correa for providing primers, Daniel Masiga for facilitating the collection of D. simulans in Kenya, OzDros (the Australian Drosophila Biomedical Research Support Facility) for enabling the import of D. simulans, Bill Sherwin for supplying D. melanogaster wildtypes from Hunter Valley, David Clancy for providing D. melanogaster w 1118 and Tran Huynh for assisting with the DAPI staining of sperm nuclei.

Funding Seed funding from the Food for 21st Century Program of the University of Missouri to P.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonci Nikolai Wolff.

Additional information

This research was supported by a Discovery Project grant (DP110104542) of the Australian Research Council (to J.W.O.B., J.N.W., and P.S.). J.N.W. is the recipient of an Australian Postdoctoral Fellowship from the Australian Research Council (DP110104542).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 121 kb)

ESM 2

(XLSX 37 kb)

ESM 3

(DOCX 91 kb)

ESM 4

(DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolff, J.N., Sutovsky, P. & Ballard, J.W.O. Mitochondrial DNA content of mature spermatozoa and oocytes in the genetic model Drosophila . Cell Tissue Res 353, 195–200 (2013). https://doi.org/10.1007/s00441-013-1628-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1628-4

Keywords

Navigation