Skip to main content

Advertisement

Log in

Regulation of glucocorticoid metabolism in the boar testis and caput epididymidis by the gonadotrophin-cAMP signalling pathway

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In target tissues, cortisol is metabolised by two 11β-hydroxysteroid dehydrogenase (11βHSD) isoenzymes, namely 11βHSD1 and 11βHSD2, both of which are co-expressed in the boar testis and reproductive tract. The present study has assessed whether cortisol-cortisone metabolism in boar testis and caput epididymidis can be regulated via the gonadotrophin-cAMP signalling pathway. 11βHSD activities were measured by using a radiometric conversion assay in static tissue culture. In both testis and caput epididymidis, the net reduction of cortisone but not the net oxidation of cortisol, was significantly decreased by luteinising hormone (by 53 ± 20% and 45 ± 9%, respectively, P < 0.05), forskolin (by 60 ± 7% and 57 ± 9%, respectively, P < 0.01) and 8-bromo-cAMP (by 54 ± 4% and 64 ± 1%, respectively, P < 0.01). This suppression of 11-ketosteroid reductase activity in the boar testis by forskolin could be attenuated by the protein kinase A (PKA) inhibitor, H89. Hence, within the boar testis and the caput epididymidis, the local actions of glucocorticoids are modulated by gonadotrophin-cAMP-PKA signalling via their selective effects on the reductase activity of 11βHSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams CS, Brumlow WB (1989) Immunocytochemical detection of luteinizing hormone in epididymis of mature mouse. Histochemistry 91:495–499

    Article  PubMed  CAS  Google Scholar 

  • Agarwal AK, Monder C, Eckstein B, White PC (1989) Cloning and expression of rat cDNA encoding corticosteroid 11β-dehydrogenase. J Biol Chem 264:18939–18943

    PubMed  CAS  Google Scholar 

  • Agarwal A, Mune T, Monder C, White P (1994) NAD+-dependent isoform of 11β-hydroxysteroid dehydrogenase. Cloning and characterization of cDNA from sheep kidney. J Biol Chem 269:25959–25962

    PubMed  CAS  Google Scholar 

  • Albiston AL, Obeyesekere VR, Smith RE, Krozowski ZS (1994) Cloning and tissue distribution of the human 1 lβ-hydroxysteroid dehydrogenase type 2 enzyme. Mol Cell Endocrinol 105:R11–R17

    Article  PubMed  CAS  Google Scholar 

  • Atanasov AG, Nashev RA, Schweizer C, Frick C, Odermatt A (2004) Hexose-6-phosphate dehydrogenase determines the reaction direction of 11β-hydroxysteroid dehydrogenase type 1 as an oxoreductase. FEBS Lett 571:129–133

    Article  PubMed  CAS  Google Scholar 

  • Bambino T, Hsueh A (1981) Direct inhibitory effect of glucocorticoids upon testicular luteinizing hormone receptor and steroidogenesis in vivo and in vitro. Endocrinology 108:2142–2148

    Article  PubMed  CAS  Google Scholar 

  • Banhegyi G, Benedetti A, Fulceri R, Senesi S (2004) Cooperativity between 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase in the lumen of the endoplasmic reticulum. J Biol Chem 279:27017–27021

    Article  PubMed  CAS  Google Scholar 

  • Bujalska IJ, Draper N, Michailidou Z, Tomlinson JW, White PC, Chapman KE, Walker EA, Stewart PM (2005) Hexose-6-phosphate dehydrogenase confers oxo-reductase activity upon 11β-hydroxysteroid dehydrogenase type 1. J Mol Endocrinol 34:675–684

    Article  PubMed  CAS  Google Scholar 

  • Bush IE, Hunter SA, Meigs RA (1968) Metabolism of 11-oxygenated steroids. Metabolism in vitro by preparations of liver. Biochem J 107:239–258

    PubMed  CAS  Google Scholar 

  • Claus RA, Wagner A, Lambert T (2005) Characterization of 11β-hydroxysteroid dehydrogenase activity in testicular tissue of control and GnRH-immunized boars as a possible regulator of spermatogenesis. Exp Clin Endocrinol Diabetes 113:262–267

    Article  PubMed  CAS  Google Scholar 

  • Cooke BA (1990) Is cyclic AMP an obligatory second messenger for luteinizing hormone? Mol Cell Endocrinol 69:C11–C15

    Article  PubMed  CAS  Google Scholar 

  • Dahia CL, Rao AJ (2006) Demonstration of follicle-stimulating hormone receptor in cauda epididymis of rat. Biol Reprod 75:98–106

    Article  PubMed  CAS  Google Scholar 

  • Davis JS (1994) Mechanisms of hormone action: luteinizing hormone receptors and second-messenger pathways. Curr Opin Obstet Gynaecol 6:254–261

    CAS  Google Scholar 

  • Draper N, Walker EA, Bujalska IJ, Tomlinson JW, Chalder SM, Arlt W, Lavery GG, Bedendo O, Ray DW, Laing I et al (2003) Mutations in the genes encoding 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nat Genet 34:434–439

    Article  PubMed  CAS  Google Scholar 

  • Edwards CR, Stewart PM, Burt D, Brett L, McIntyre MA, Sutanto WS, de Kloet ER, Monder C (1988) Localisation of 11β-hydroxysteroid dehydrogenase—tissue specific protector of the mineralocorticoid receptor. Lancet II:986–989

    Article  Google Scholar 

  • Gao HB, Ge RS, Lakshmi V, Marandici A, Hardy MP (1997) Hormonal regulation of oxidative and reductive activities of 11β-hydroxysteroid dehydrogenase in rat Leydig cells. Endocrinology 138:156–161

    Article  PubMed  CAS  Google Scholar 

  • Ge RS, Hardy MP (2000) Initial predominance of the oxidative activity of type I 11β-hydroxysteroid dehydrogenase in primary rat Leydig cells and transfected cell lines. J Androl 21:303–310

    PubMed  CAS  Google Scholar 

  • Ge RS, Hardy MP (2002) Protein kinase C increases 11β-hydroxysteroid dehydrogenase oxidation and inhibits reduction in rat Leydig cells. J Androl 23:135–143

    PubMed  CAS  Google Scholar 

  • Ge RS, Gao HB, Gao VL, Nacharaju GL, Gunsalus GL, Hardy MP (1997a) Identification of a kinetically distinct activity of 11β-hydroxysteroid dehydrogenase in rat Leydig cells. Endocrinology 138:2435–2442

    Article  PubMed  CAS  Google Scholar 

  • Ge RS, Hardy O, Catterall JF, Hardy MP (1997b) Developmental changes in glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase oxidative and reductive activities in rat Leydig cells. Endocrinology 138:5089–5095

    Article  PubMed  CAS  Google Scholar 

  • Goxe B, Prunier A, Remy J-J, Salesse R (1993) Ontogeny of gonadal luteinizing hormone and follicle-stimulating hormone receptors in the fetal pig and related changes in gonadotropin and testosterone secretion. Biol Reprod 49:609–616

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Luna CV, Budik S, Aurich C (2012)Gene expression of ACTH, glucocorticoid receptors, 11βHSD enzymes, LH-, FSH-, GH receptors and aromatase in equine epididymal and testicular tissue.Reprod Domest Anim 47:928–935

    Article  PubMed  CAS  Google Scholar 

  • Hess RA, Bunick D, Lee KH, Bahr J, Taylor JA, Korach KS, Lubahn DB (1997) A role for oestrogens in the male reproductive system. Nature 390:509–512

    Article  PubMed  CAS  Google Scholar 

  • Hult M, Shafqat N, Elleby B, Mitschke D, Svensson S, Forsgre M, Barf T, Vallgarda J, Abrahmsen L, Oppermann U (2006) Active site variability of type 1 11β-hydroxysteroid dehydrogenase revealed by selective inhibitors and cross-species comparisons. Mol Cell Endocrinol 248:26–33

    Article  PubMed  CAS  Google Scholar 

  • Klemcke HG, Sampath Kumar R, Yang JL, Vallet JL, Christenson RK (2003) 11β-Hydroxysteroid dehydrogenase and glucocorticoid receptor messenger RNA expression in porcine placentae: effects of stage of gestation, breed, and uterine environment. Biol Reprod 69:1945–1950

    Article  PubMed  CAS  Google Scholar 

  • Lange F, Aigner M, Muller M, Claus R (2003) Porcine 11β-hydroxysteroid dehydrogenase type 2 isoform: complete coding sequence and polymorphisms. Anim Biotechnol 14:13–17

    Article  PubMed  CAS  Google Scholar 

  • Lei ZM, Zou W, Mishra S, Li X, Rao ChV (2003) Epididymal phenotype in luteinizing hormone receptor knockout animals and its response to testosterone replacement therapy. Biol Reprod 68:888–895

    Article  PubMed  CAS  Google Scholar 

  • Lejeune H, Sanchez P, Chuzel F, Langlois D, Saez JM (1998) Time-course effects of human recombinant luteinizing hormone on porcine Leydig cell specific differentiated functions. Mol Cell Endocrinol 144:59–69

    Article  PubMed  CAS  Google Scholar 

  • Lochner A, Moolman JA (2006) The many faces of H89: a review. Cardiovasc Drug Rev 24:261–274

    Article  PubMed  CAS  Google Scholar 

  • McCormick KL, Wang X, Mick GJ (2006) Evidence that the 11β-hydroxysteroid dehydrogenase (11βHSD1) is regulated by pentose pathway flux. Studies in rat adipocytes and microsomes. J Biol Chem 281:341–347

    Article  PubMed  CAS  Google Scholar 

  • Mercer W, Krozowski Z (1992) Localization of an 11β-hydroxysteroid dehydrogenase activity to the distal nephron. Evidence for the existence of two species of dehydrogenase in the rat kidney. Endocrinology 130:540–543

    Article  PubMed  CAS  Google Scholar 

  • Michael AE, Cooke BA (1994) A working hypothesis for the regulation of steroidogenesis and germ cell development in the gonads by glucocorticoids and 11β-hydroxysteroid dehydrogenase (11βHSD). Mol Cell Endocrinol 100:55–63

    Article  PubMed  CAS  Google Scholar 

  • Michael AE, Evagelatou M, Norgate DP, Clarke RJ, Antoniw JW, Stedman A, Brenan R, Welsby R, Bujalska I, Stewart PM, Cooke BA (1997) Isoforms of 11β-hydroxysteroid dehydrogenase in human granulosa-lutein cells. Mol Cell Endocrinol 132:43–52

    Article  PubMed  CAS  Google Scholar 

  • Michael AE, Thurston LM, Rae MT (2003) Glucocorticoid metabolism and reproduction: a tale of two enzymes. Reproduction 126:425–441

    Article  PubMed  CAS  Google Scholar 

  • Monder C, Lakshmi V (1989) Evidence for kinetically distinct forms of corticosteroid 11β-dehydrogenase in rat liver microsomes. J Steroid Biochem 32:77–83

    Article  PubMed  CAS  Google Scholar 

  • Monder C, Hardy MP, Blanchard RJ, Blanchard DC (1994a) Comparative aspects of 11β-hydroxysteroid dehydrogenase. Testicular 11β-hydroxysteroid dehydrogenase: development of a model for the mediation of Leydig cell function by corticosteroids. Steroids 59:69–73

    Article  PubMed  CAS  Google Scholar 

  • Monder C, Miroff Y, Marandici A, Hardy M (1994b) 11β-Hydroxysteroid dehydrogenase alleviates glucocorticoid-mediated inhibition of steroidogenesis in rat Leydig cells. Endocrinology 134:1199–1204

    Article  PubMed  CAS  Google Scholar 

  • Moore C, Mellon S, Murai J, Siiteri P, Miller W (1993) Structure and function of the hepatic form of 11β-hydroxysteroid dehydrogenase in the squirrel monkey, an animal model of glucocorticoid resistance. Endocrinology 133:368–375

    Article  PubMed  CAS  Google Scholar 

  • Pearce PT, Lipkevicius OR, Funder JW (1986) High affinity (type 1) aldosterone-binding sites in rat epididymis. Endocrinology 118:2072–2075

    Article  PubMed  CAS  Google Scholar 

  • Phillips ML, Schultz BD (2002) Steroids modulate transepithelial resistance and Na+ absorption across cultured porcine vas deferens epithelia. Biol Reprod 66:1016–1023

    Article  PubMed  CAS  Google Scholar 

  • Phillips D, Lakshmi V, Monder C (1989) Corticosteroid 11β-dehydrogenase in rat testis. Endocrinology 125:209–216

    Article  PubMed  CAS  Google Scholar 

  • Rajan V, Chapman KE, Lyons V, Jamieson P, Mullins JJ, Edwards CRW, Seckl JR (1995) Cloning, sequencing and tissue-distribution of mouse 11β-hydroxysteroid dehydrogenase 1 cDNA. J Steroid Biochem Mol Biol 52:141–147

    Article  PubMed  CAS  Google Scholar 

  • Richards JS (2001) New signaling pathways for hormones and cyclic adenosine 3′,5′-monophosphate action in endocrine cells. Mol Endocrinol 15:209–218

    Article  PubMed  CAS  Google Scholar 

  • Seckl JR, Walker BR (2001) Minireview: 11β-hydroxysteroid dehydrogenase type 1—a tissue-specific amplifier of glucocorticoid action. Endocrinology 142:1371–1376

    Article  PubMed  CAS  Google Scholar 

  • Sharp V, Thurston LM, Fowkes RC, Michael AE (2007) 11β-Hydroxysteroid dehydrogenase enzymes in the testis and male reproductive tract of the boar (Sus scrofa domestica) indicate local roles for glucocorticoids in male reproductive physiology. Reproduction 134:473–482

    Article  PubMed  CAS  Google Scholar 

  • Sharp V, Thurston LM, Fowkes RC, Michael AE (2009) Expression and activities of 11βHSD enzymes in the testes and reproductive tracts of sexually immature male pigs. J Steroid Biochem Mol Biol 115:98–106

    Article  PubMed  CAS  Google Scholar 

  • Shayu D, Rao AJ (2006) Expression of functional aromatase in the epididymis: role of androgens and LH in modulation of expression and activity. Mol Cell Endocrinol 249:40–50

    Article  PubMed  CAS  Google Scholar 

  • Sordoillet C, Chauvin MA, de Peretti E, Morera AM, Benahmed M (1991) Epidermal growth factor directly stimulates steroidogenesis in primary cultures of porcine Leydig cells: actions and sites of action. Endocrinology 128:2160–2168

    Article  PubMed  CAS  Google Scholar 

  • Sunak N, Green DF, Abeydeera LR, Thurston LM, Michael AE (2007) Implication of cortisol and 11β-hydroxysteroid dehydrogenase (11βHSD) enzymes in the development of porcine (Sus scrofa domestica) ovarian follicles and cysts. Reproduction 133:1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Swider-Al-Amawi M, Kolasa A, Sikorski A, Marchlewicz M, Baranowska-Bosiacka I, Wiszniewska B (2010) The immunoexpression of FSH-R in the ductuli efferentes and the epididymis of men and rat: effect of FSH on the morphology and steroidogenic activity of rat epididymal epithelial cells in vitro. J Biomed Biotechnol 2010:506762

    Article  PubMed  Google Scholar 

  • Tannin G, Agarwal A, Monder C, New M, White P (1991) The human gene for 11β-hydroxysteroid dehydrogenase. Structure, tissue distribution, and chromosomal localization. J Biol Chem 266:16653–16658

    PubMed  CAS  Google Scholar 

  • Thurston LM, Abayasekara DRE, Michael AE (2007) 11β-Hydroxysteroid dehydrogenase (11βHSD) expression and activities in bovine granulosa cells and corpora lutea implicate corticosteroids in bovine ovarian physiology. Reproduction 193:299–310

    CAS  Google Scholar 

  • Vandalem JL, McNamara M, Petit R, Hennen G (1986) Developmental changes in gonadotrophins and testicular gonadotrophin receptors in the pig, from neonatal to adult life. J Endocrinol 111:301–308

    Article  PubMed  CAS  Google Scholar 

  • Waddell BJ, Hisheh S, Krozowski ZS, Burton PJ (2003) Localization of 11β-hydroxysteroid dehydrogenase types 1 and 2 in the male reproductive tract. Endocrinology 144:3101–3106

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Claus R (2004) Involvement of glucocorticoids in testicular involution after active immunization of boars against GnRH. Reproduction 127:275–283

    Article  PubMed  CAS  Google Scholar 

  • Walker BR, Campbell JC, Williams BC, Edwards CR (1992) Tissue-specific distribution of the NAD+-dependent isoform of 11β-hydroxysteroid dehydrogenase. Endocrinology 131:970–972

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Zhang P, Gao HB (2009) Luteinizing hormone induces expression of 11β-hydroxysteroid dehydrogenase type 2 in rat Leydig cells. Reprod Biol Endocrinol 7:39

    Article  PubMed  Google Scholar 

  • Whorwood CB, Mason JI, Ricketts ML, Howie AJ, Stewart PM (1995) Detection of human 11β-hydroxysteroid dehydrogenase isoforms using reverse-transcriptase-polymerase chain reaction and localization of the type 2 isoform to renal collecting ducts. Mol Cell Endocrinol 110:R7–R12

    Article  PubMed  CAS  Google Scholar 

  • Yang K, Smith C, Dales D, Hammond G, Challis J (1992) Cloning of an ovine 11β-hydroxysteroid dehydrogenase complementary deoxyribonucleic acid: tissue and temporal distribution of its messenger ribonucleic acid during fetal and neonatal development. Endocrinology 131:2120–2126

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Guo CX, Hu ZY, Lui YX (1997) Localization of plasminogen activator and inhibitor, LH and androgen receptors and inhibin subunits in monkey epididymis. Mol Hum Reprod 3:945–952

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the A&G Barber slaughterhouse (Chelmsford, Essex) for supplying all boar testis and reproductive tract tissues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Cabrera-Sharp.

Additional information

This work was funded by a Royal Veterinary College PhD studentship to support V.C.-S. and by an internal funding award from the Royal Veterinary College to R.C.F.

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrera-Sharp, V., Mirczuk, S.M., Shervill, E. et al. Regulation of glucocorticoid metabolism in the boar testis and caput epididymidis by the gonadotrophin-cAMP signalling pathway. Cell Tissue Res 352, 751–760 (2013). https://doi.org/10.1007/s00441-013-1613-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1613-y

Keywords

Navigation