Skip to main content

Translational value of startle modulations

Abstract

The startle is a relatively simple ubiquitous reflex. Interestingly, it has a “non-zero baseline”, i.e., its magnitude can be reduced or enhanced. We reflect here on the translational value of prepulse inhibition and fear-related potentiation as endophenotypes that can be used for the investigation of complex psychiatric diseases such as schizophrenia and anxiety-related disorders. Our main conclusions are that both phenomena of startle modulation are useful tools for basic research in investigating the genetic and/or neurobiological basis of certain aspects of these disorders. Because of their stable and robust nature, however, both biomarkers are of limited use for predicting the occurrence of diseases in high-risk people or for predicting the course of an illness.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Abi-Dargham A (2004) Do we still believe in the dopamine hypothesis? New data bring new evidence. Int J Neuropsychopharm 7:1–5

    Article  CAS  Google Scholar 

  • Adamec RE, Blundell J, Collins A (2001) Neural plasticity and stress induced changes in defense in the rat. Neurosci Biobehav Rev 25:721–744

    PubMed  CAS  Article  Google Scholar 

  • Adamec RE, Head D, Blundell J, Burton P, Berton O (2006) Lasting anxiogenic effects of feline predator stress in mice: sex differences in vulnerability to stress and predicting severity of anxiogenic response from the stress experience. Physiol Behav 88:12–29

    PubMed  CAS  Article  Google Scholar 

  • Anokhin AP, Heath AC, Myers E, Ralano A, Wood S (2003) Genetic influences on prepulse inhibition of startle reflex in humans. Neurosci Lett 353:45–48

    PubMed  CAS  Article  Google Scholar 

  • Baas JMP, Mol N, Kenemans JL, Prinssen EP, Niklson I, Xia-Chen C, Broeyer F, van Gerven J (2009) Validating a human model for anxiety using startle potentiated by cue and context: the effects of alprazolam, pregabalin, and diphenhydramine. Psychopharmacology 205:73–84

    PubMed  CAS  Article  Google Scholar 

  • Bakshi VP, Kalin NH (2002) Animal models and endophenotypes of anxiety and stress disorders. In: Davis KL, Charney DS, Coyle TS, Nemeroff CB (eds) Neuropsychopharmacology: the fifth generation of progress. American College of Neuropsychopharmacology, Brentwood, pp 883–900

    Google Scholar 

  • Bechara A, Tranel D, Damasio H, Adolphs R, Rockland C, Damasio AR (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269:1115–1118

    PubMed  CAS  Article  Google Scholar 

  • Beckmann H (2001) Neuropathology of the endogenous psychoses. In: Henn F, Sartorius N, Helmchen H, Lauer H (eds) Contemporary psychiatry. Springer, Berlin, pp 81–100

    Google Scholar 

  • Bert B, Fink H, Huston JP, Voits M (2002) Fischer 344 and Wistar rats differ in anxiety and habituation but not in water maze performance. Neurobiol Learn Mem 78:11–22

    PubMed  Article  Google Scholar 

  • Birnbaum SG, Lidow MS, Davis M (1995) The effect of corticotropin releasing hormone on the acoustic startle reflex. Soc Neurosci Abstr 21:664.15

    Google Scholar 

  • Bitsios P, Giakoumaki SG (2005) Relationship of prepulse inhibition of the startle reflex to attentional and executive mechanisms in man. Int J Psychophysiol 55:229–241

    PubMed  Article  Google Scholar 

  • Bitsios P, Giakoumaki SG, Theou K, Frangou S (2006) Increased prepulse inhibition of the acoustic startle response is associated with better strategy formation and execution times in healthy males. Neuropsychologia 44:2494–2499

    PubMed  Article  Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer MA, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    PubMed  CAS  Article  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258

    PubMed  CAS  Article  Google Scholar 

  • Brintzenhofe-Szoc KM, Levin TT, Li YL, Kissane DW, Zabora JR (2009) Mixed anxiety/depression symptoms in a large cancer cohort: prevalence by cancer type. Psychosomatics 50:383–391

    PubMed  Article  Google Scholar 

  • Brooks SP, Pask T, Jones L, Dunnett SB (2004) Behavioural profiles of inbred mouse strains used as transgenic backgrounds. I. Motor tests. Genes Brain Behav 3:206–215

    PubMed  CAS  Article  Google Scholar 

  • Brown JS, Kalish HI, Farber IE (1951) Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J Exp Psychol 41:317–328

    PubMed  CAS  Article  Google Scholar 

  • Büchel C, Morris J, Dolan RJ, Friston KJ (1998) Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron 20:947–957

    PubMed  Article  Google Scholar 

  • Cousens GA, Skrobacz CG, Blumenthal A (2011) Nucleus accumbens carbachol disrupts olfactory and contextual fear-potentiated startle and attenuates baseline startle reactivity. Behav Brain Res 216:673–680

    PubMed  CAS  Article  Google Scholar 

  • Cryan JF, Sweeney FF (2011) The age of anxiety: role of animal models of anxiolytic action in drug discovery. Br J Pharmacol 164:1129–1161

    PubMed  CAS  Article  Google Scholar 

  • Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Lääne K, Pena Y, Murphy ER, Shah Y, Probst K, Abakumova I, Aiqbirhio FI, Richards HK, Hong Y, Baron JC, Everitt BJ, Robbins TW (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315:1267–1270

    PubMed  CAS  Article  Google Scholar 

  • Davis M (2006) Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol 61:741–756

    PubMed  Article  Google Scholar 

  • Davis M, File SE (1984) Intrinsic and extrinsic mechanisms of habituation and sensitization: implications for the design and analysis of experiments. In: Peeke HVS, Petrinovich L (eds) Habituation, sensitization, and behavior. Academic Press, New York, pp 287–323

    Google Scholar 

  • Davis M, Falls WA, Campeau S, Kim M (1993) Fear-potentiated startle: a neural and pharmacological analysis. Behav Brain Res 58:175–198

    PubMed  CAS  Article  Google Scholar 

  • de Jongh R, Groenink L, van der Gugten J, Olivier B (2002) The light-enhanced startle paradigm as a putative animal model for anxiety: effects of chlordiazepoxide, flesinoxan and fluvoxamine. Psychopharmacology 159:176–180

    PubMed  Article  CAS  Google Scholar 

  • Dieckmann M, Freudenberg F, Klein S, Koch M, Schwabe K (2007) Disturbed social behavior and motivation in rats selectively bred for deficient sensorimotor gating. Schizophr Res 97:250–253

    PubMed  Article  Google Scholar 

  • Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A (2009) Amygdala inhibitory circuits and the control of fear memory. Neuron 62:757–771

    PubMed  CAS  Article  Google Scholar 

  • Ellenbroek BA, Cools AR (2002) Early maternal deprivation and prepulse inhibition. The role of the postdeprivation environment. Pharmacol Biochem Behav 73:177–184

    PubMed  CAS  Article  Google Scholar 

  • Endres T, Apfelbach R, Fendt M (2005) Behavioral changes induced in rats by exposure to trimethylthiazoline, a component of fox odor. Behav Neurosci 119:1004–1010

    PubMed  Article  Google Scholar 

  • Ersche KD, Jones PS, Williams GB, Turton AJ, Robbins TW, Bullmore ET (2012) Abnormal brain structure implicated in stimulant drug addiction. Science 335:601–604

    PubMed  CAS  Article  Google Scholar 

  • Fani N, Tone EB, Phifer J, Norrholm SD, Bradley B, Ressler KJ, Kamkwalala A, Jovanovic T (2012) Attention bias toward threat is associated with exaggerated fear expression and impaired extinction in PTSD. Psychol Med 42:533–543

    PubMed  CAS  Article  Google Scholar 

  • Fendt M, Fanselow MS (1999) The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev 23:743–760

    PubMed  CAS  Article  Google Scholar 

  • Fendt M, Mucha RF (2000) Anxiogenic-like effects of opiate withdrawal seen in the fear-potentiated startle test, a possible comparative probe for drug-related states. Psychopharmacology 155:242–250

    Article  Google Scholar 

  • Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology 156:216–224

    PubMed  CAS  Article  Google Scholar 

  • Fendt M, Lex A, Falkai P, Henn FA, Schmitt A (2008) Behavioural alterations in rats following neonatal hypoxia and effects of clozapine: implications for schizophrenia. Pharmacopsychiatry 41:138–145

    PubMed  CAS  Article  Google Scholar 

  • Freudenberg F, Dieckmann M, Winter S, Koch M, Schwabe K (2007) Selective breeding for deficient sensorimotor gating is accompanied by increased perseveration in rats. Neuroscience 148:612–622

    PubMed  CAS  Article  Google Scholar 

  • Gainetdinov RR, Mohn AR, Caron MG (2001) Genetic animal models: focus on schizophrenia. Trends Neurosci 24:527–533

    PubMed  CAS  Article  Google Scholar 

  • Geyer MA, Braff DL (1987) Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophr Bull 13:643–668

    PubMed  CAS  Article  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    PubMed  CAS  Article  Google Scholar 

  • Golub Y, Mauch CP, Dahlhoff M, Wotjak CT (2009) Consequences of extinction training on associative and non-associative fear in a mouse model of posttraumatic stress disorder (PTSD). Behav Brain Res 205:544–549

    PubMed  Article  Google Scholar 

  • Gottesman II, Shields J (1973) Genetic theorizing and schizophrenia. Br J Psychiatry 122:15–30

    PubMed  CAS  Article  Google Scholar 

  • Graham FK (1975) The more or less startling effects of weak prestimulation. Psychophysiology 12:238–248

    PubMed  CAS  Article  Google Scholar 

  • Graham FK (1979) Distinguishing among orienting, defense, and startle reflexes. In: Kimmel HD, van Olst EH, Orlebeke JF (eds) The orienting reflex in humans. Erlbaum, New York, pp 137–167

    Google Scholar 

  • Gresack JE, Risbrough VB (2011) Corticotropin-releasing factor and noradrenergic signalling exert reciprocal control over startle reactivity. Int J Neuropsychopharmacol 14:1179–1194

    PubMed  CAS  Article  Google Scholar 

  • Grillon C (2002) Startle reactivity and anxiety disorders: aversive conditioning, context, and neurobiology. Biol Psychiatry 52:958–975

    PubMed  Article  Google Scholar 

  • Grillon C (2008) Models and mechanisms of anxiety: evidence from startle studies. Psychopharmacology 199:421–437

    PubMed  CAS  Article  Google Scholar 

  • Grillon C, Baas JM (2003) A review of the modulation of the startle reflex by affective states and its application in psychiatry. Clin Neurophysiol 114:1557–1579

    PubMed  Article  Google Scholar 

  • Grillon C, Morgan CA (1999) Fear-potentiated startle conditioning to explicit and contextual cues in Gulf War veterans with posttraumatic stress disorder. J Abnorm Psychol 108:134–142

    PubMed  CAS  Article  Google Scholar 

  • Grillon C, Baas JP, Lissek S, Smith K, Milstein J (2004) Anxious responses to predictable and unpredictable aversive events. Behav Neurosci 118:916–924

    PubMed  Article  Google Scholar 

  • Grillon C, Warner V, Hille J, Merikangas KR, Bruder GE, Tenke CE, Nomura Y, Leite P, Weissman MM (2005) Families at high and low risk for depression: a three-generation startle study. Biol Psychiatry 57:953–960

    PubMed  Article  Google Scholar 

  • Grillon C, Baas JM, Pine DS, Lissek S, Lawley M, Ellis V, Levine J (2006) The benzodiazepine alprazolam dissociates contextual fear from cued fear in humans as assessed by fear-potentiated startle. Biol Psychiatry 60:760–766

    PubMed  CAS  Article  Google Scholar 

  • Grillon C, Lissek S, Rabin S, McDowell D, Dvir S, Pine DS (2008) Increased anxiety during anticipation of unpredictable but not predictable aversive stimuli as a psychophysiologic marker of panic disorder. Am J Psychiatry 165:898–904

    PubMed  Article  Google Scholar 

  • Grillon C, Pine DS, Lissek S, Rabin S, Bonne O, Vythilingam M (2009) Increased anxiety during anticipation of unpredictable aversive stimuli in posttraumatic stress disorder but not in generalized anxiety disorder. Biol Psychiatry 66:47–53

    PubMed  Article  Google Scholar 

  • Grillon C, Heller R, Hirschhorn E, Kling MA, Pine DS, Schulkin J, Vythilingam M (2011) Acute hydrocortisone treatment increases anxiety but not fear in healthy volunteers: a fear-potentiated startle study. Biol Psychiatry 69:549–555

    PubMed  CAS  Article  Google Scholar 

  • Hamid H, Ettinger AB, Mula M (2011) Anxiety symptoms in epilepsy: salient issues for future research. Epilepsy Behav 22:63–68

    PubMed  Article  Google Scholar 

  • Hamm AO, Weike AI (2005) The neuropsychology of fear learning and fear regulation. Int J Psychophysiol 57:5–14

    PubMed  Article  Google Scholar 

  • Hebb AL, Zacharko RM, Gauthier M, Drolet G (2003) Exposure of mice to a predator odor increases acoustic startle but does not disrupt the rewarding properties of VTA intracranial self-stimulation. Brain Res 982:195–210

    PubMed  CAS  Article  Google Scholar 

  • Hitchcock JM, Davis M (1986) Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm. Behav Neurosci 100:11–22

    PubMed  CAS  Article  Google Scholar 

  • Hitchcock JM, Davis M (1987) Fear-potentiated startle using an auditory conditioned stimulus: effect of lesions of the amygdala. Physiol Behav 39:403–408

    PubMed  CAS  Article  Google Scholar 

  • Hoffman HS, Fleshler M (1963) Startle reaction: modification by background acoustic stimulation. Science 141:928–930

    PubMed  CAS  Article  Google Scholar 

  • Hoffman HS, Searle JL (1965) Acoustic variables in the modification of startle reaction in the rat. J Comp Physiol Psychol 60:53–58

    PubMed  CAS  Article  Google Scholar 

  • Inta D, Vogt MA, Perrau-Lenz S, Schneider M, Pfeiffer N, Wojcik SM, Spanagel R, Gass P (2012) Sensorimotor gating, working memory and social memory deficits in mice with reduced expression of the vesicular glutamate transporter VGLUT1. Behav Brain Res 228:328–332

    PubMed  CAS  Article  Google Scholar 

  • Jovanovic T, Norrholm SD, Blanding NQ, Davis M, Duncan E, Bradley B, Ressler KJ (2010) Impaired fear inhibition is a biomarker of PTSD but not depression. Depress Anxiety 27:244–251

    PubMed  Article  Google Scholar 

  • Kalkmann HO, Loetscher E (2003) GAD67: the link between the GABA-deficit hypothesis and the dopaminergic- and glutamatergic theories of psychosis. J Neural Transm 110:803–812

    Google Scholar 

  • Kashdan TB, Adams L, Read J, Hawk L Jr (2012) Can a one-hour session of exposure treatment modulate startle response and reduce spider fears? Psychiatry Res 196:79–82

    PubMed  Article  Google Scholar 

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–128

    PubMed  CAS  Article  Google Scholar 

  • Koch M (2006) Animal models of schizophrenia. In: Koch M (ed) Animal models of neuropsychiatric diseases. Imperial College Press, London, pp 337–402

    Chapter  Google Scholar 

  • Koch M (2013) Clinical relevance of animal models of schizophrenia. Clin Neurophysiol (in press)

  • Koch M, Fendt M (2003) Startle response modulation as a behavioral tool in neuropharmacology. Curr Neuropharmacol 1:175–185

    CAS  Article  Google Scholar 

  • Koch M, Schmid A, Schnitzler H-U (1996) Pleasure-attenuation of startle is disrupted by lesions of the nucleus accumbens. NeuroReport 7:1442–1446

    PubMed  CAS  Article  Google Scholar 

  • LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20:937–945

    PubMed  CAS  Article  Google Scholar 

  • Lang PJ (1995) The emotion probe. Studies of motivation and attention. Am Psychol 50:372–385

    PubMed  CAS  Article  Google Scholar 

  • Lang PJ, Bradley MM, Cuthbert BN (1990) Emotion, attention, and the startle reflex. Psychol Rev 97:377–395

    PubMed  CAS  Article  Google Scholar 

  • Lang PJ, Bradley MM, Cuthbert BN (1998) Emotion, motivation, and anxiety: brain mechanisms and psychophysiology. Biol Psychiatry 44:1248–1263

    PubMed  CAS  Article  Google Scholar 

  • Laxmi TR, Stork O, Pape HC (2003) Generalisation of conditioned fear and its behavioural expression in mice. Behav Brain Res 145:89–98

    PubMed  Article  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    PubMed  CAS  Article  Google Scholar 

  • Light GA, Swerdlow NR, Rissling AJ, Radant A, Sugar CA, Sprock J, Pela M, Geyer MA, Braff DL (2012) Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia. PLoS One 7:1–12

    Article  CAS  Google Scholar 

  • Lipska BK (2004) Using animal models to test a neurodevelopmental hypothesis of schizophrenia. J Psychiatry Neurosci 29:282–286

    PubMed  Google Scholar 

  • Lissek S (2012) Toward an account of clinical anxiety predicated on basic, neurally mapped mechanisms of Pavlovian fear-learning: the case for conditioned overgeneralization. Depress Anxiety 29:257–263

    PubMed  Article  Google Scholar 

  • Lissek S, Rabin S, Heller RE, Lukenbaugh D, Geraci M, Pine DS, Grillon C (2010) Overgeneralization of conditioned fear as a pathogenic marker of panic disorder. Am J Psychiatry 167:47–55

    PubMed  Article  Google Scholar 

  • Lorwin A, Graf J, Vollstedt J, Hagenah J, Tadic V, Bruggemann N, Tunc S, Hampf J, Piskol L, Klein C, Kasten M (2012) Symptoms of depression and anxiety: a population-based cohort to study Parkinson’s disease. Mov Disord 27:S385

    Google Scholar 

  • Lysaker PH, Salyers MP (2007) Anxiety symptoms in schizophrenia spectrum disorders: associations with social function, positive and negative symptoms, hope and trauma history. Acta Psychiatr Scand 116:290–298

    PubMed  CAS  Article  Google Scholar 

  • Maren S (2005) Synaptic mechanisms of associative memory in the amygdala. Neuron 47:783–786

    PubMed  CAS  Article  Google Scholar 

  • Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, Yee BK, Feldon J (2006) The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 26:4752–4762

    PubMed  CAS  Article  Google Scholar 

  • Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, Zeidan MA, Handwerger K, Orr SP, Rauch SL (2009) Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry 66:1075–1082

    PubMed  Article  Google Scholar 

  • Moberg CA, Curtin JJ (2009) Alcohol selectively reduces anxiety but not fear: startle response during unpredictable versus predictable threat. J Abnorm Psychol 118:335–347

    PubMed  Article  Google Scholar 

  • Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–436

    PubMed  CAS  Article  Google Scholar 

  • Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12:120–150

    PubMed  CAS  Article  Google Scholar 

  • Norrholm SD, Jovanovic T, Olin IW, Sands LA, Karapanou I, Bradley B, Ressler KJ (2011) Fear extinction in traumatized civilians with posttraumatic stress disorder: relation to symptom severity. Biol Psychiatry 69:556–563

    PubMed  Article  Google Scholar 

  • Palmer AA, Breen LL, Flodman P, Conti LH, Spence MA, Printz MP (2003) Identification of quantitative trait loci for prepulse inhibition in rats. Psychopharmacology 165:270–279

    PubMed  CAS  Google Scholar 

  • Pape HC, Pare D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90:419–463

    PubMed  CAS  Article  Google Scholar 

  • Pape HC, Stork O (2003) Genes and mechanisms in the amygdala involved in the formation of fear memory. Ann N Y Acad Sci 985:92–105

    PubMed  CAS  Article  Google Scholar 

  • Pare D, Quirk GJ, LeDoux J (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92:1–9

    PubMed  Article  Google Scholar 

  • Peak H (1939) Time order error in successive judgements and in reflexes. I. Inhibition of the judgement and the reflex. J Exp Psychol 25:535–565

    Article  Google Scholar 

  • Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187

    PubMed  CAS  Article  Google Scholar 

  • Risbrough VB, Hauger RL, Roberts AL, Vale WW, Geyer MA (2004) Corticotropin-releasing factor receptors CRF1 and CRF2 exert both additive and opposing influences on defensive startle behavior. J Neurosci 24:6545–6552

    PubMed  CAS  Article  Google Scholar 

  • Robinson OJ, Overstreet C, Allen PS, Pine DS, Grillon C (2012) Acute tryptophan depletion increases translational indices of anxiety but not fear: serotonergic modulation of the bed nucleus of the stria terminalis? Neuropsychopharmacology 37:1963–1971

    PubMed  CAS  Article  Google Scholar 

  • Schmitt A, Fendt M, Zink M, Ebert U, Starke M, Berthold M, Herb A, Petroianu G, Falkai P, Henn FA (2007) Altered NMDA receptor expression and behavior following postnatal hypoxia: potential relevance to schizophrenia. J Neural Transm 114:239–248

    PubMed  CAS  Article  Google Scholar 

  • Schneider M, Spanagel R (2008) Appetitive odor-cue conditioning attenuates the acoustic startle response in rats. Behav Brain Res 189:226–230

    PubMed  Article  Google Scholar 

  • Schulz-Klaus B, Fendt M, Schnitzler H-U (2006) Temporary inactivation of the perirhinal cortex induces an anxiolytic-like effect on the elevated plus-maze and on the yohimbine-enhanced startle response. Behav Brain Res 163:173

    Google Scholar 

  • Schwabe K, Freudenberg F, Koch M (2007) Selective breeding of reduced sensorimotor gating in Wistar rats. Behav Genet 37:706–712

    PubMed  Article  Google Scholar 

  • Schwegler H, Pilz PKD, Koch M, Fendt M, Linke R, Driscoll P (1997) Acoustic startle response in inbred Roman high- and low avoidance rats. Behav Gen 27:579–582

    CAS  Article  Google Scholar 

  • Shaban H, Humeau Y, Herry C, Cassasus G, Shigemoto R, Ciocchi S, Barbieri S, van der Putten H, Kaupmann K, Bettler B, Luthi A (2006) Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nat Neurosci 9:1028–1035

    PubMed  CAS  Article  Google Scholar 

  • Shalev AY, Rogel-Fuchs Y (1992) Auditory startle reflex in post-traumatic stress disorder patients treated with clonazepam. Isr J Psychiatry Relat Sci 29:1–6

    PubMed  CAS  Google Scholar 

  • Siegmund A, Wotjak CT (2007) Hyperarousal does not depend on trauma-related contextual memory in an animal model of posttraumatic stress disorder. Physiol Behav 90:103–107

    PubMed  CAS  Article  Google Scholar 

  • Singer P, Hauser J, Lopez LL, Peleg-Raibstein D, Feldon J, Gargiulo PA, Yee BK (2013) Prepulse inhibition predicts working memory performance whilst startle habituation predicts spatial reference memory retention in C57BL/6 mice. Behav Brain Res 242:166–177

    PubMed  Article  Google Scholar 

  • Steidl S, Li L, Yeomans JS (2001) Conditioned brain-stimulation reward attenuates the acoustic startle reflex in rats. Behav Neurosci 115:710–717

    PubMed  CAS  Article  Google Scholar 

  • Steiner MA, Lecourt H, Rakotoariniaina A, Jenck F (2011) Favoured genetic background for testing anxiolytics in the fear-potentiated and light-enhanced startle paradigms in the rat. Behav Brain Res 221:34–42

    PubMed  CAS  Article  Google Scholar 

  • Swerdlow NR (2009) Prepulse inhibition of startle in humans and in laboratory models. In: Squire LR (ed) Encyclopedia of Neuroscience. Academic Press, New York, pp 947–955

    Chapter  Google Scholar 

  • Swerdlow NR (2012) Update: studies of prepulse inhibition of startle, with particular relevance to the pathophysiology of Tourette syndrome. Neurosci Biobehav Rev (in press)

  • Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51:139–154

    PubMed  CAS  Article  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156:194–215

    PubMed  CAS  Article  Google Scholar 

  • Swerdlow NR, Platten A, Hanlon FM, Martinez ZA, Printz MP, Auerbach P (2003) Sensitivity to sensorimotor gating-disruptive effects of apomorphine in two outbred parental rat strains and their F1 and N2 progeny. Neuropsychopharmacology 28:226–234

    PubMed  CAS  Article  Google Scholar 

  • Swerdlow NR, Light GA, Cadenhead KS, Sprock J, Hsieh MH, Braff DL (2006) Startle gating deficits in a large cohort of patients with schizophrenia. Arch Gen Psychiatry 63:1325–1335

    PubMed  Article  Google Scholar 

  • Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology 199:331–388

    PubMed  CAS  Article  Google Scholar 

  • Swerdlow NR, Shilling PD, Breier M, Trim RS, Light GA, Marie RS (2012) Fronto-temporal-mesolimbic gene expression and heritable differences in amphatamine-disrupted sensorimotor gating in rats. Psychopharmacology 224:349–362

    PubMed  CAS  Article  Google Scholar 

  • Timpano KR, Hasler G, Riccardi C, Murphy DL, Schmidt NB (2009) The genetics of anxiety: recent findings and considerations for future research. In: Berntson G, Cacioppo J (eds) Handbook of neuroscience for the behavioral sciences. Wiley, Hoboken. doi:10.1002/9780470478509.neubb002056

    Google Scholar 

  • van Well S, Visser RM, Scholte HS, Kindt M (2012) Neural substrates of individual differences in human fear learning: evidence from concurrent fMRI, fear-potentiated startle, and US-expectancy data. Cogn Affect Behav Neurosci 12:499–512

    PubMed  Article  Google Scholar 

  • van den Buuse M, Garner B, Koch M (2003) Neurodevelopmental animal models of schizophrenia: effects on prepulse inhibition. Curr Mol Med 3:459–471

    PubMed  Article  Google Scholar 

  • Vansteenwegen D, Iberico C, Vervliet B, Marescau V, Hermans D (2008) Contextual fear induced by unpredictability in a human fear conditioning preparation is related to the chronic expectation of a threatening US. Biol Psychol 77:39–46

    PubMed  Article  Google Scholar 

  • Walker DL, Davis M (2002) Light-enhanced startle: further pharmacological and behavioral characterization. Psychopharmacology 159:304–310

    PubMed  CAS  Article  Google Scholar 

  • Weike AI, Bauer U, Hamm AO (2000) Effective neuroleptic medication removes prepulse inhibition deficits in schizophrenia patients. Biol Psychiatry 47:61–70

    PubMed  CAS  Article  Google Scholar 

  • Weinberger DR (1995) Schizophrenia as a neurodevelopmental disorder. In: Hirsch SR, Weinberger DR (eds) Schizophrenia. Blackwell Science, Oxford, pp 293–323

    Google Scholar 

  • Weiss IC, Feldon J (2001) Environmental animal models for sensorimotor gating deficiencies in schizophrenia: a review. Psychopharmacology 156:305–326

    PubMed  CAS  Article  Google Scholar 

  • Yeomans JS, Frankland PW (1996) The acoustic startle reflex: neurons and connections. Brain Res Rev 21:301–314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Markus Fendt or Michael Koch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fendt, M., Koch, M. Translational value of startle modulations. Cell Tissue Res 354, 287–295 (2013). https://doi.org/10.1007/s00441-013-1599-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1599-5

Keywords

  • Anxiety disorders
  • Endophenotypes
  • Fear
  • Prepulse-inhibition
  • Schizophrenia