Skip to main content

Advertisement

Log in

Enhanced differentiation potential of human amniotic mesenchymal stromal cells by using three-dimensional culturing

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The therapeutic potential of human amniotic mesenchymal stromal cells (hAMSCs) remains limited because of their differentiation towards mesenchymal stem cells (MSCs) following adherence. The aim of this study was to develop a three-dimensional (3-D) culture system that would permit hAMSCs to differentiate into cardiomyocyte-like cells. hAMSCs were isolated from human amnions of full-term births collected after Cesarean section. Immunocytochemistry, immunofluorescence and flow cytometry analyses were undertaken to examine hAMSC marker expression for differentiation status after adherence. Membrane currents were determined by patch clamp analysis of hAMSCs grown with or without cardiac lysates. Freshly isolated hAMSCs were positive for human embryonic stem-cell-related markers but their marker profile significantly shifted towards that of MSCs following adherence. hAMSCs cultured in the 3-D culture system in the presence of cardiac lysate expressed cardiomyocyte-specific markers, in contrast to those maintained in standard adherent cultures or those in 3-D cultures without cardiac lysate. hAMSCs cultured in 3-D with cardiac lysate displayed a cardiomyocyte-like phenotype as observed by membrane currents, including a calcium-activated potassium current, a delayed rectifier potassium current and a Ca2+-resistant transient outward K+ current. Thus, although adherence limits the potential of hAMSCs to differentiate into cardiomyocyte-like cells, the 3-D culture of hAMSCs represents a more effective method of their culture for use in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140

    Article  PubMed  CAS  Google Scholar 

  • Barlow S, Brooke G, Chatterjee K, Price G, Pelekanos R, Rossetti T, Doody M, Venter D, Pain S, Gilshenan K, Atkinson K (2008) Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev 17:1095–1108

    Article  PubMed  CAS  Google Scholar 

  • Bendall SC, Stewart MH, Bhatia M (2008) Human embryonic stem cells: lessons from stem cell niches in vivo. Regen Med 3:365–376

    Article  PubMed  CAS  Google Scholar 

  • Bollini S, Cheung KK, Dong X, Smart N, Ghionzoli M, Loukogeorgakis SP, Maghsoudlou P, Dubé KN, Riley PR, Lythgoe MF, De Coppi P (2011) Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells Dev 20:1985–1994

    Article  PubMed  CAS  Google Scholar 

  • Brooke G, Tong H, Levesque JP, Atkinson K (2008) Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta stem cells. Stem Cells Dev 17:929–940

    Article  PubMed  CAS  Google Scholar 

  • Cao XX, Dai YY, Zhang SY, Chen LF, Lai JZ, Yan XW (2006) Porcine MSC-derived CLC induced by rabbit's cardiomyocytes extract did not induce immune reaction in vivo (in Chinese). Zhonghua Xin Xue Guan Bing Za Zhi 34:929–932

    PubMed  CAS  Google Scholar 

  • Caplan AI (2006) Mesenchymal stem cells. In: Lanza R, Blau H, Melton D, Moore M, Thomas ED, Verfaillie C, Weissman I, West M (eds) Handbook of stem cells, vol 2. Adult and Fetal. Academic Press/Beijing Science, Beijing, pp 299–308

    Google Scholar 

  • Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749

    Article  PubMed  CAS  Google Scholar 

  • Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95

    Article  PubMed  Google Scholar 

  • Choi YH, Kurtz A, Stamm C (2011) Mesenchymal stem cells for cardiac cell therapy. Hum Gene Ther 22:3–17

    Article  PubMed  CAS  Google Scholar 

  • Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ (2004) Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol A44:654–660

    Article  Google Scholar 

  • Díaz-Prado S, Muiños-López E, Hermida-Gómez T, Rendal-Vázquez ME, Fuentes-Boquete I, de Toro FJ, Blanco F (2010) Multilineage differentiation potential of cells isolated from the human amniotic membrane. J Cell Biochem 11:846–857

    Article  Google Scholar 

  • Fujimoto KL, Miki T, Liu LJ, Hashizume R, Strom SC, Wagner WR, Keller BB, Tobita K (2009) Naive rat amnion-derived cell transplantation improved left ventricular function and reduced myocardial scar of postinfarcted heart. Cell Transplant 18:477–486

    Article  PubMed  Google Scholar 

  • Guan J, Wang F, Li Z, Chen J, Guo X, Liao J, Moldovan NI (2011) The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials 32:5568–5580

    Article  PubMed  CAS  Google Scholar 

  • Hall VJ, Kristensen M, Rasmussen MA, Ujhelly O, Dinnyés A, Hyttel P (2012) Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells. Cell Reprogram 14:204–216

    PubMed  CAS  Google Scholar 

  • In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Groot-Swings GM de, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345

  • Jang H, Kim TW, Yoon S, Choi SY, Kang TW, Kim SY, Kwon YW, Cho EJ, Youn HD (2012) O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell 11:62-74

    Article  PubMed  CAS  Google Scholar 

  • Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414

    PubMed  CAS  Google Scholar 

  • Milne AA (2004) Clinical impact of fibrin sealants. Vox Sang 87:29–30

    Article  PubMed  Google Scholar 

  • Miki T, Lehmann T, Cai H, Stolz DB, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559

    Article  PubMed  CAS  Google Scholar 

  • Miranda-Sayago JM, Fernández-Arcas N, Benito C, Reyes-Engel A, Carrera J, Alonso A (2011) Lifespan of human amniotic fluid-derived multipotent mesenchymal stromal cells. Cytotherapy 13:572–581

    Article  PubMed  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  PubMed  CAS  Google Scholar 

  • Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the First International Workshop on Placenta Derived Stem Cells. Stem Cells 26:300–311

    Article  PubMed  Google Scholar 

  • Paul D, Samuel SM, Maulik N (2009) Mesenchymal stem cell: present challenges and prospective cellular cardiomyoplasty approaches for myocardial regeneration. Antioxid Redox Signal 11:1841–1855

    Article  PubMed  CAS  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25:2896–2902

    Article  PubMed  Google Scholar 

  • Psaltis PJ, Zannettino AC, Worthley SG, Gronthos S (2008) Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 26:2201–2210

    Article  PubMed  Google Scholar 

  • Qian H, Yang Y, Huang J, Dou K, Yang G (2006) Cellular cardiomyoplasty by catheter-based infusion of stem cells in clinical settings. Transpl Immunol 16:135–147

    Article  PubMed  CAS  Google Scholar 

  • Ramesh B, Bishi DK, Rallapalli S, Arumugam S, Cherian KM, Guhathakurta S (2012) Ischemic cardiac tissue conditioned media induced differentiation of human mesenchymal stem cells into early stage cardiomyocytes. Cytotechnology 64:563–575

    Article  PubMed  Google Scholar 

  • Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086

    Article  PubMed  CAS  Google Scholar 

  • Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Valarmathi MT, Yost MJ, Goodwin RL, Potts JD (2008) The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold. Biomaterials 29:2203–2216

    Article  PubMed  CAS  Google Scholar 

  • Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148

    Article  PubMed  Google Scholar 

  • Yan Y, Chen L, Zhang S, Wu W, Chen H, Yan XW (2005) Differentiation of mesenchymal stem cells into cardiomyogenic cells under the induction of myocardial cell lysate (in Chinese). Zhonghua Xin Xue Guan Bing Za Zhi 33:169–173

    Google Scholar 

  • Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79:528–535

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank JinFeng Wang for guidance in the experimental design of this work and Bin Zhao for assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Ling Zhu.

Additional information

Xue Lin and HaoYu Li contributed equally to this work.

This work was supported by the PUMCH Youth Foundation.

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, X., Li, H.Y., Chen, L.F. et al. Enhanced differentiation potential of human amniotic mesenchymal stromal cells by using three-dimensional culturing. Cell Tissue Res 352, 523–535 (2013). https://doi.org/10.1007/s00441-013-1576-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1576-z

Keywords

Navigation