Advertisement

Cell and Tissue Research

, Volume 352, Issue 2, pp 301–312 | Cite as

Transplantation-potential-related biological properties of decidua basalis mesenchymal stem cells from maternal human term placenta

  • Guohui Lu
  • Shaofang Zhu
  • Yiquan Ke
  • Xiaodan Jiang
  • Shizhong ZhangEmail author
Regular Article

Abstract

Human placental decidua basalis originates from the maternal side of the placenta and has been described as a source of mesenchymal stem cells (MSCs). However, for its application in tissue regeneration and repair, the transplantation-potential-related biological properties of decidua-basalis-derived mesenchymal stem cells (DBMSCs) remain to be elucidated. We obtained DBMSCs through enzymatic digestion and density gradient centrifugation and confirmed their capacity to differentiate into cell types of the mesodermal lineage, such as osteoblasts, adipocytes and chondroblasts. Karyotype analysis showed that the isolated DBMSCs maintained chromosomal stability after long-term culture in vitro. Growth kinetics and ultrastructural observation revealed a high level of DBMSC proliferative activity. In addition, DBMSCs showed immunosuppressive properties by suppressing both mitogen- and alloantigen-induced peripheral lymphocyte proliferation. All of these properties suggest that DBMSCs, which are abundant and easily accessible, are a novel potential source of seed cells for cell transplantation treatments.

Keywords

Decidua-basalis-derived mesenchymal stem cells Transplantation Stability Proliferation Immunosuppression Human 

Notes

Acknowledgments

We thank Ms. Jin Xu from the Medical Languages Center of Southern Medical University for her proofreading of this paper.

References

  1. Bailo M, Soncini M, Vertua E, Signoroni PB, Sanzone S, Lombardi G, Arienti D, Calamani F, Zatti D, Paul P, Albertini A, Zorzi F, Cavagnini A, Candotti F, Wengler GS, Parolini O (2004) Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 78:1439–1448PubMedCrossRefGoogle Scholar
  2. Chang CJ, Yen ML, Chen YC, Chien CC, Huang HI, Bai CH, Yen BL (2006) Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 24:2466–2477PubMedCrossRefGoogle Scholar
  3. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of Eve. Cell 124:1111–1115PubMedCrossRefGoogle Scholar
  4. Conway DS, Pearce LA, Chin BS, Hart RG, Lip GY (2002) Plasma von Willebrand factor and soluble p-selectin as indices of endothelial damage and platelet activation in 1321 patients with nonvalvular atrial fibrillation: relationship to stroke risk factors. Circulation 106:1962–1967PubMedCrossRefGoogle Scholar
  5. Ding DC, Shyu WC, Lin SZ (2011) Mesenchymal stem cells. Cell Transplant 20:5–14PubMedCrossRefGoogle Scholar
  6. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRefGoogle Scholar
  7. Hori J, Wang M, Kamiya K, Takahashi H, Sakuragawa N (2006) Immunological characteristics of amniotic epithelium. Cornea 25:S53–S58PubMedCrossRefGoogle Scholar
  8. Horwitz EM, Andreef M, Frassoni F (2007) Mesenchymal stromal cells. Biol Blood Marrow Transplant 13:53–57CrossRefGoogle Scholar
  9. Huang YC, Yang ZM, Chen XH, Tan MY, Wang J, Li XQ, Xie HQ, Deng L (2009) Isolation of mesenchymal stem cells from human placental decidua basalis and resistance to hypoxia and serum deprivation. Stem Cell Rev 5:247–255PubMedCrossRefGoogle Scholar
  10. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77:577–588PubMedCrossRefGoogle Scholar
  11. Ilancheran S, Moodley Y, Manuelpillai U (2009) Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta 30:2–10PubMedCrossRefGoogle Scholar
  12. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345CrossRefGoogle Scholar
  13. Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM, Markham AF, Jack A, Emery P, McGonagle D (2002) Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46:3349–3360PubMedCrossRefGoogle Scholar
  14. Junker JP, Sommar P, Skog M, Johnson H, Kratz G (2010) Adipogenic, chondrogenic and osteogenic differentiation of clonally derived human dermal fibroblasts. Cells Tissues Organs 191:105–118PubMedCrossRefGoogle Scholar
  15. Kakishita K, Nakao N, Sakuragawa N, Itakura T (2003) Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res 980:48–56PubMedCrossRefGoogle Scholar
  16. Kaplan JM, Youd ME, Lodie TA (2011) Immunomodulatory activity of mesenchymal stem cells. Curr Stem Cell Res Ther 6:297–316PubMedCrossRefGoogle Scholar
  17. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106–118PubMedCrossRefGoogle Scholar
  18. Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262:509–525PubMedCrossRefGoogle Scholar
  19. Li H, Fan X, Kovi RC, Jo Y, Moquin B, Konz R, Stoicov C, Kurt-Jones E, Grossman SR, Lyle S, Rogers AB, Montrose M, Houghton J (2007) Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res 67:10889–10898PubMedCrossRefGoogle Scholar
  20. Li M, Zhang SZ, Guo YW, Cai YQ, Yan ZJ, Zou Z, Jiang XD, Ke YQ, He XY, Jin ZL, Lu GH, Su DQ (2010) Human umbilical vein-derived dopaminergic-like cell transplantation with nerve growth factor ameliorates motor dysfunction in a rat model of Parkinson’s disease. Neurochem Res 35:1522–1529PubMedCrossRefGoogle Scholar
  21. Lindner U, Kramer J, Rohwedel J, Schlenke P (2010) Mesenchymal stem or stromal cells: toward a better understanding of their biology? Transfus Med Hemother 37:75–83PubMedCrossRefGoogle Scholar
  22. Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C, Miller N, Hennessy E, Dockery P, Barry FP, O’Brien T, Kerin MJ (2010) Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 124:317–326PubMedCrossRefGoogle Scholar
  23. Meisner LF, Johnson JA (2008) Protocols for cytogenetic studies of human embryonic stem cells. Methods 45:133–141PubMedCrossRefGoogle Scholar
  24. Mueller SM, Glowacki J (2001) Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem 82:583–590PubMedCrossRefGoogle Scholar
  25. Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S (2004) Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng 88:359–368PubMedCrossRefGoogle Scholar
  26. Rubio D, Garcia-Castro J, Martin MC, Fuente R de la, Cigudosa JC, Lloyd AC, Bernad A (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3039PubMedGoogle Scholar
  27. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T (2001) Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182:18–32PubMedCrossRefGoogle Scholar
  28. Sankar V, Muthusamy R (2003) Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 118:11–17PubMedCrossRefGoogle Scholar
  29. Satija NK, Singh VK, Verma YK, Gupta P, Sharma S, Afrin F, Sharma M, Sharma P, Tripathi RP, Gurudutta GU (2009) Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J Cell Mol Med 13:4385–4402PubMedCrossRefGoogle Scholar
  30. Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, Albertini A, Wengler GS, Parolini O (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1:296–305PubMedCrossRefGoogle Scholar
  31. Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, Rao DK, Das M, Jan M, Gupta PK, Totey SM (2010) Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 155:62–70PubMedCrossRefGoogle Scholar
  32. Wei JP, Zhang TS, Kawa S, Aizawa T, Ota M, Akaike T, Kato K, Konishi I, Nikaido T (2003) Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant 12:545–552PubMedGoogle Scholar
  33. Wolbank S, Peterbauer A, Fahrner M, Hennerbichler S, Griensven M van, Stadler G, Redl H, Gabriel C (2007) Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng 13:1173–1183PubMedCrossRefGoogle Scholar
  34. Yang Y, Rossi FM, Putnins EE (2007) Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture. Biomaterials 28:3110–3120PubMedCrossRefGoogle Scholar
  35. Zhang J, Li Y, Chen J, Cui Y, Lu M, Elias SB, Mitchell JB, Hammill L, Vanguri P, Chopp M (2005) Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol 195:16–26PubMedCrossRefGoogle Scholar
  36. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Le AD (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183:7787–7798PubMedCrossRefGoogle Scholar
  37. Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79:528–535PubMedCrossRefGoogle Scholar
  38. Zhou D, Jiang X, Xu R, Cai Y, Hu J, Xu G, Zou Y, Zeng Y (2008a) Assessing the cytoskeletal system and its elements in C6 glioma cells and astrocytes by atomic force microscopy. Cell Mol Neurobiol 28:895–905PubMedCrossRefGoogle Scholar
  39. Zhou K, Zhang H, Jin O, Feng X, Yao G, Hou Y, Sun L (2008b) Transplantation of human bone marrow mesenchymal stem cell ameliorates the autoimmune pathogenesis in MRL/lpr mice. Cell Mol Immunol 5:417–424PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guohui Lu
    • 1
  • Shaofang Zhu
    • 2
    • 3
  • Yiquan Ke
    • 1
  • Xiaodan Jiang
    • 1
  • Shizhong Zhang
    • 1
    Email author
  1. 1.Department of Neurosurgery, Institute of Neurosurgery, Provincial Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang HospitalSouthern Medical UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Gynaecology and Obstetrics, Zhujiang HospitalSouthern Medical UniversityGuangzhouPeople’s Republic of China
  3. 3.Department of Gynaecology and ObstetricsMedical College of Shaoguan UniversityShaoguanPeople’s Republic of China

Personalised recommendations