Skip to main content

Advertisement

Log in

Mechanical cues in cellular signalling and communication

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Multicellular organisms comprise an organized array of individual cells surrounded by a meshwork of biomolecules and fluids. Cells have evolved various ways to communicate with each other, so that they can exchange information and thus fulfil their specified and unique functions. At the same time, cells are also physical entities that are subjected to a variety of local and global mechanical cues arising in the microenvironment. Cells are equipped with several different mechanisms to sense the physical properties of the microenvironment and the mechanical forces arising within it. These mechanical cues can elicit a variety of responses that have been shown to play a crucial role in vivo. In this review, we discuss the current views and understanding of cell mechanics and demonstrate the emerging evidence of the interplay between physiological mechanical cues and cell-cell communication pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Archambault JM, Elfervig-Wall MK, Tsuzaki M, Herzog W, Banes AJ (2002) Rabbit tendon cells produce MMP-3 in response to fluid flow without significant calcium transients. J Biomech 35:303–309

    Article  PubMed  Google Scholar 

  • Baker BM, Chen CS (2012) Deconstructing the third dimension; how 3D culture microenvironments alter cellular cues. J Cell Sci 125:3015–3024

    Article  PubMed  CAS  Google Scholar 

  • Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339:269–280

    Article  PubMed  CAS  Google Scholar 

  • Beningo KA, Wang YL (2002) Flexible substrata for the detection of cellular traction forces. Trends Cell Biol 12:79–84

    Article  PubMed  CAS  Google Scholar 

  • Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117:568–575

    Article  PubMed  CAS  Google Scholar 

  • Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18:472–481

    Article  PubMed  CAS  Google Scholar 

  • Besschetnova TY, Kolpakova-Hart E, Guan Y, Zhou J, Olsen BR, Shah JV (2010) Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr Biol 20:182–187

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya R, Gonzalez AM, Debiase PJ, Trejo HE, Goldman RD, Flitney FW, Jones JC (2009) Recruitment of vimentin to the cell surface by beta3 integrin and plectin mediates adhesion strength. J Cell Sci 122:1390–1400

    Article  PubMed  CAS  Google Scholar 

  • Boucher PA, Joos B, Morris CE (2012) Coupled left-shift of Nav channels: modeling the Na(+)-loading and dysfunctional excitability of damaged axons. J Comput Neurosci 33:301–319

    Article  PubMed  Google Scholar 

  • Brown AE, Discher DE (2009) Conformational changes and signaling in cell and matrix physics. Curr Biol 19:R781–R789

    Article  PubMed  CAS  Google Scholar 

  • Buschmann I, Pries A, Styp-Rekowska B, Hillmeister P, Loufrani L, Henrion D, Shi Y, Duelsner A, Hoefer I, Gatzke N, Wang H, Lehmann K, Ulm L, Ritter Z, Hauff P, Hlushchuk R, Djonov V, van Veen T, le Noble F (2010) Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development 137:2187–2196

    Article  PubMed  CAS  Google Scholar 

  • Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122

    Article  PubMed  CAS  Google Scholar 

  • Buxboim A, Ivanovska IL, Discher DE (2010) Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells “feel” outside and in? J Cell Sci 123:297–308

    Article  PubMed  CAS  Google Scholar 

  • Carmignac V, Durbeej M (2012) Cell-matrix interactions in muscle disease. J Pathol 226:200–218

    Article  PubMed  CAS  Google Scholar 

  • Charras GT, Horton MA (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 82:2970–2981

    Article  PubMed  CAS  Google Scholar 

  • Choudhury N, Bouchot O, Rouleau L, Tremblay D, Cartier R, Butany J, Mongrain R, Leask RL (2009) Local mechanical and structural properties of healthy and diseased human ascending aorta tissue. Cardiovasc Pathol 18:83–91

    Article  PubMed  Google Scholar 

  • Ciapetti G, Granchi D, Baldini N (2012) The combined use of mesenchymal stromal cells and scaffolds for bone repair. Curr Pharm Des 18:1796–1820

    Article  PubMed  CAS  Google Scholar 

  • Ciobanasu C, Faivre B, Le Clainche C (2012) Actin dynamics associated with focal adhesions. Int J Cell Biol 2012:941292

    PubMed  Google Scholar 

  • Cowin SC (1998) On mechanosensation in bone under microgravity. Bone 22:119S–125S

    Article  PubMed  CAS  Google Scholar 

  • Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4:165–178

    Article  PubMed  CAS  Google Scholar 

  • Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172:41–53

    Article  PubMed  CAS  Google Scholar 

  • Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102:1307–1318

    Article  PubMed  CAS  Google Scholar 

  • Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22:832–853

    Article  PubMed  CAS  Google Scholar 

  • Dufrene YF (2002) Atomic force microscopy, a powerful tool in microbiology. J Bacteriol 184:5205–5213

    Article  PubMed  CAS  Google Scholar 

  • Dufrene YF (2008) Towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol 6:674–680

    Article  PubMed  CAS  Google Scholar 

  • Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183

    Article  PubMed  CAS  Google Scholar 

  • Dupres V, Alsteens D, Andre G, Dufrene YF (2010) Microbial nanoscopy: a closer look at microbial cell surfaces. Trends Microbiol 18:397–405

    Article  PubMed  CAS  Google Scholar 

  • Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166:877–887

    Article  PubMed  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  PubMed  CAS  Google Scholar 

  • Eyckmans J, Boudou T, Yu X, Chen CS (2011) A hitchhiker's guide to mechanobiology. Dev Cell 21:35–47

    Article  PubMed  CAS  Google Scholar 

  • Farge E (2011) Mechanotransduction in development. Curr Top Dev Biol 95:243–265

    Article  PubMed  Google Scholar 

  • Farsad K, De Camilli P (2003) Mechanisms of membrane deformation. Curr Opin Cell Biol 15:372–381

    Article  PubMed  CAS  Google Scholar 

  • Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  PubMed  CAS  Google Scholar 

  • Fliegauf M, Benzing T, Omran H (2007) When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 8:880–893

    Article  PubMed  CAS  Google Scholar 

  • Formigli L, Meacci E, Sassoli C, Chellini F, Giannini R, Quercioli F, Tiribilli B, Squecco R, Bruni P, Francini F, Zecchi-Orlandini S (2005) Sphingosine 1-phosphate induces cytoskeletal reorganization in C2C12 myoblasts: physiological relevance for stress fibres in the modulation of ion current through stretch-activated channels. J Cell Sci 118:1161–1171

    Article  PubMed  CAS  Google Scholar 

  • Franke WW (2009) Discovering the molecular components of intercellular junctions—a historical view. Cold Spring Harb Perspect Biol 1:a003061

    Article  PubMed  Google Scholar 

  • Fudge DS, Gardner KH, Forsyth VT, Riekel C, Gosline JM (2003) The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads. Biophys J 85:2015–2027

    Article  PubMed  CAS  Google Scholar 

  • Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33

    Article  PubMed  CAS  Google Scholar 

  • Ghajar CM, Bissell MJ (2008) Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging. Histochem Cell Biol 130:1105–1118

    Article  PubMed  CAS  Google Scholar 

  • Gilula NB, Satir P (1972) The ciliary necklace. A ciliary membrane specialization. J Cell Biol 53:494–509

    Article  PubMed  CAS  Google Scholar 

  • Glogauer M, Ferrier J, McCulloch CA (1995) Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated Ca2+ flux in fibroblasts. Am J Physiol 269:C1093–C1104

    PubMed  CAS  Google Scholar 

  • Green KJ, Getsios S, Troyanovsky S, Godsel LM (2010) Intercellular junction assembly, dynamics, and homeostasis. Cold Spring Harb Perspect Biol 2:a000125

    Article  PubMed  Google Scholar 

  • Grierson JP, Meldolesi J (1995) Shear stress-induced [Ca2+]i transients and oscillations in mouse fibroblasts are mediated by endogenously released ATP. J Biol Chem 270:4451–4456

    Article  PubMed  CAS  Google Scholar 

  • Guolla L, Bertrand M, Haase K, Pelling AE (2012) Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces. J Cell Sci 125:603–613

    Article  PubMed  CAS  Google Scholar 

  • Guvendiren M, Burdick JA (2012) Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun 3:792

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP (2006) Twenty odd years of stretch-sensitive channels. Pflugers Arch 453:333–351

    Article  PubMed  CAS  Google Scholar 

  • Haswell ES, Phillips R, Rees DC (2011) Mechanosensitive channels: what can they do and how do they do it? Structure 19:1356–1369

    Article  PubMed  CAS  Google Scholar 

  • Hierck BP, Van der Heiden K, Alkemade FE, Van de Pas S, Van Thienen JV, Groenendijk BC, Bax WH, Van der Laarse A, Deruiter MC, Horrevoets AJ, Poelmann RE (2008)Primary cilia sensitize endothelial cells for fluid shear stress.Dev Dyn 237:725–735

    Article  PubMed  CAS  Google Scholar 

  • Hinz B (2010) The myofibroblast: paradigm for a mechanically active cell. J Biomech 43:146–155

    Article  PubMed  Google Scholar 

  • Hoey DA, Kelly DJ, Jacobs CR (2011) A role for the primary cilium in paracrine signaling between mechanically stimulated osteocytes and mesenchymal stem cells. Biochem Biophys Res Commun 412:182–187

    Article  PubMed  CAS  Google Scholar 

  • Hoey DA, Downs ME, Jacobs CR (2012) The mechanics of the primary cilium: an intricate structure with complex function. J Biomech 45:17–26

    Article  PubMed  Google Scholar 

  • Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323

    Article  PubMed  CAS  Google Scholar 

  • Hung CT, Allen FD, Pollack SR, Attia ET, Hannafin JA, Torzilli PA (1997) Intracellular calcium response of ACL and MCL ligament fibroblasts to fluid-induced shear stress. Cell Signal 9:587–594

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  PubMed  CAS  Google Scholar 

  • Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Miller RT (2011) Mechanisms of mechanical signaling in development and disease. J Cell Sci 124:9–18

    Article  PubMed  CAS  Google Scholar 

  • Jensen CG, Poole CA, McGlashan SR, Marko M, Issa ZI, Vujcich KV, Bowser SS (2004) Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ. Cell Biol Int 28:101–110

    Article  PubMed  CAS  Google Scholar 

  • Johnson WA (2011) Mechanobiology of cell-cell and cell-matrix interactions. Springer, New York

    Book  Google Scholar 

  • Kass L, Erler JT, Dembo M, Weaver VM (2007) Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol 39:1987–1994

    Article  PubMed  CAS  Google Scholar 

  • Kaverina I, Krylyshkina O, Beningo K, Anderson K, Wang YL, Small JV (2002) Tensile stress stimulates microtubule outgrowth in living cells. J Cell Sci 115:2283–2291

    PubMed  CAS  Google Scholar 

  • Kiehart DP, Galbraith CG, Edwards KA, Rickoll WL, Montague RA (2000) Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J Cell Biol 149:471–490

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Wong P, Coulombe PA (2006) A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441:362–365

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Wong PK, Park J, Levchenko A, Sun Y (2009) Microengineered platforms for cell mechanobiology. Annu Rev Biomed Eng 11:203–233

    Article  PubMed  CAS  Google Scholar 

  • Kirmse R, Otto H, Ludwig T (2011) Interdependency of cell adhesion, force generation and extracellular proteolysis in matrix remodeling. J Cell Sci 124:1857–1866

    Article  PubMed  CAS  Google Scholar 

  • Krepkiy D, Mihailescu M, Freites JA, Schow EV, Worcester DL, Gawrisch K, Tobias DJ, White SH, Swartz KJ (2009) Structure and hydration of membranes embedded with voltage-sensing domains. Nature 462:473–479

    Article  PubMed  CAS  Google Scholar 

  • Kreplak L, Herrmann H, Aebi U (2008) Tensile properties of single desmin intermediate filaments. Biophys J 94:2790–2799

    Article  PubMed  CAS  Google Scholar 

  • Kunda P, Pelling AE, Liu T, Baum B (2008) Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr Biol 18:91–101

    Article  PubMed  CAS  Google Scholar 

  • Kuo JC, Han X, Hsiao CT, Yates JR 3rd, Waterman CM (2011) Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for beta-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol 13:383–393

    Article  PubMed  CAS  Google Scholar 

  • Kurth F, Eyer K, Franco-Obregon A, Dittrich PS (2012) A new mechanobiological era: microfluidic pathways to apply and sense forces at the cellular level. Curr Opin Chem Biol 16:400–408

    Article  PubMed  CAS  Google Scholar 

  • Levayer R, Lecuit T (2012) Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol 22:61–81

    Article  PubMed  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  PubMed  CAS  Google Scholar 

  • Mammoto A, Mammoto T, Ingber DE (2012) Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 125:3061-3073

    Article  PubMed  CAS  Google Scholar 

  • Matthews BD, Thodeti CK, Tytell JD, Mammoto A, Overby DR, Ingber DE (2010) Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr Biol (Camb) 2:435–442

    Article  CAS  Google Scholar 

  • Mazumder A, Shivashankar GV (2010) Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development. J R Soc Interface 7 (Suppl 3):S321–S330

    Article  PubMed  CAS  Google Scholar 

  • McCullen SD, Haslauer CM, Loboa EG (2010) Musculoskeletal mechanobiology: interpretation by external force and engineered substratum. J Biomech 43:119–127

    Article  PubMed  Google Scholar 

  • Mejillano MR, Kojima S, Applewhite DA, Gertler FB, Svitkina TM, Borisy GG (2004) Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118:363–373

    Article  PubMed  CAS  Google Scholar 

  • Meyer CJ, Alenghat FJ, Rim P, Fong JH, Fabry B, Ingber DE (2000) Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat Cell Biol 2:666–668

    Article  PubMed  CAS  Google Scholar 

  • Mitrossilis D, Fouchard J, Pereira D, Postic F, Richert A, Saint-Jean M, Asnacios A (2010) Real-time single-cell response to stiffness. Proc Natl Acad Sci USA 107:16518–16523

    Article  PubMed  CAS  Google Scholar 

  • Mizutani T, Haga H, Kawabata K (2004) Cellular stiffness response to external deformation: tensional homeostasis in a single fibroblast. Cell Motil Cytoskeleton 59:242–248

    Article  PubMed  CAS  Google Scholar 

  • Monnerie H, Tang-Schomer MD, Iwata A, Smith DH, Kim HA, Le Roux PD (2010) Dendritic alterations after dynamic axonal stretch injury in vitro. Exp Neurol 224:415–423

    Article  PubMed  CAS  Google Scholar 

  • Muller DJ, Dufrene YF (2011) Force nanoscopy of living cells. Curr Biol 21:R212–R216

    Article  PubMed  CAS  Google Scholar 

  • Myers KA, Applegate KT, Danuser G, Fischer RS, Waterman CM (2011) Distinct ECM mechanosensing pathways regulate microtubule dynamics to control endothelial cell branching morphogenesis. J Cell Biol 192:321–334

    Article  PubMed  CAS  Google Scholar 

  • Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N (2008) Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci USA 105:6626–6631

    Article  PubMed  CAS  Google Scholar 

  • Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118:4731–4739

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  PubMed  CAS  Google Scholar 

  • Oldham WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9:60–71

    Article  PubMed  CAS  Google Scholar 

  • Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE (2007) Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci USA 104:15619–15624

    Article  PubMed  CAS  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  PubMed  CAS  Google Scholar 

  • Pedersen JA, Boschetti F, Swartz MA (2007) Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix. J Biomech 40:1484–1492

    Article  PubMed  Google Scholar 

  • Pelling AE, Horton MA (2008) An historical perspective on cell mechanics. Pflugers Arch 456:3–12

    Article  PubMed  CAS  Google Scholar 

  • Pelling AE, Veraitch FS, Chu CP, Mason C, Horton MA (2009) Mechanical dynamics of single cells during early apoptosis. Cell Motil Cytoskeleton 66:409–422

    Article  PubMed  CAS  Google Scholar 

  • Petrie RJ, Gavara N, Chadwick RS, Yamada KM (2012) Nonpolarized signaling reveals two distinct modes of 3D cell migration. J Cell Biol 197:439–455

    Article  PubMed  CAS  Google Scholar 

  • Praetorius HA, Spring KR (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191:69–76

    Article  PubMed  CAS  Google Scholar 

  • Puliafito A, Hufnagel L, Neveu P, Streichan S, Sigal A, Fygenson DK, Shraiman BI (2012) Collective and single cell behavior in epithelial contact inhibition. Proc Natl Acad Sci USA 109:739–744

    Article  PubMed  CAS  Google Scholar 

  • Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252:1705–1708

    Article  PubMed  CAS  Google Scholar 

  • Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JP, Gonzalez M, Rios S, Cambiazo V (2004) Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J Cell Biochem 93:721–731

    Article  PubMed  CAS  Google Scholar 

  • Rohatgi R, Snell WJ (2010)The ciliary membrane.Curr Opin Cell Biol 22:541–546

    Article  PubMed  CAS  Google Scholar 

  • Rouleau L, Tremblay D, Cartier R, Mongrain R, Leask RL (2012) Regional variations in canine descending aortic tissue mechanical properties change with formalin fixation. Cardiovasc Pathol 21:390–397

    Article  PubMed  Google Scholar 

  • Ruegg C, Veigel C, Molloy JE, Schmitz S, Sparrow JC, Fink RH (2002) Molecular motors: force and movement generated by single myosin II molecules. News Physiol Sci 17:213–218

    PubMed  Google Scholar 

  • Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol 132:1–77

    Article  PubMed  CAS  Google Scholar 

  • Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 17:153–162

    Article  PubMed  Google Scholar 

  • Schwarz US, Gardel ML (2012) United we stand: integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J Cell Sci 125:3051-3060

    Article  PubMed  CAS  Google Scholar 

  • Seko Y, Seko Y, Takahashi N, Shibuya M, Yazaki Y (1999a) Pulsatile stretch stimulates vascular endothelial growth factor (VEGF) secretion by cultured rat cardiac myocytes. Biochem Biophys Res Commun 254:462–465

    Article  PubMed  CAS  Google Scholar 

  • Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y (1999b) Pulsatile stretch activates mitogen-activated protein kinase (MAPK) family members and focal adhesion kinase (p125[FAK]) in cultured rat cardiac myocytes. Biochem Biophys Res Commun 259:8–14

    Article  PubMed  CAS  Google Scholar 

  • Serra-Picamal X, Conte V, Vincent R, Anon E, Tambe DT, Bazellieres E, Butler JP, Fredberg JJ, Trepat X (2012) Mechanical waves during tissue expansion. Nat Phys 8:628–634

    Article  CAS  Google Scholar 

  • Shi ZD, Tarbell JM (2011) Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann Biomed Eng 39:1608–1619

    Article  PubMed  Google Scholar 

  • Shivashankar GV (2011) Mechanosignaling to the cell nucleus and gene regulation. Annu Rev Biophys 40:361–378

    Article  PubMed  CAS  Google Scholar 

  • Shraiman BI (2005) Mechanical feedback as a possible regulator of tissue growth. Proc Natl Acad Sci USA 102:3318–3323

    Article  PubMed  CAS  Google Scholar 

  • Simske JS, Hardin J (2001) Getting into shape: epidermal morphogenesis in Caenorhabditis elegans embryos. Bioessays 23:12–23

    Article  PubMed  CAS  Google Scholar 

  • Solon J, Kaya-Copur A, Colombelli J, Brunner D (2009) Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. Cell 137:1331–1342

    Article  PubMed  Google Scholar 

  • Stewart MP, Helenius J, Toyoda Y, Ramanathan SP, Muller DJ, Hyman AA (2011) Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469:226–230

    Article  PubMed  CAS  Google Scholar 

  • Storch U, Mederos y Schnitzler M, Gudermann T (2012) G protein-mediated stretch reception. Am J Physiol Heart Circ Physiol 302:H1241–H1249

    Article  PubMed  CAS  Google Scholar 

  • Sukharev S, Sachs F (2012) Molecular force transduction by ion channels: diversity and unifying principles. J Cell Sci 125:3075-3083

    Article  PubMed  CAS  Google Scholar 

  • Suki B, Bates JH (2008) Extracellular matrix mechanics in lung parenchymal diseases. Respir Physiol Neurobiol 163:33–43

    Article  PubMed  CAS  Google Scholar 

  • Swartz MA, Fleury ME (2007) Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 9:229–256

    Article  PubMed  CAS  Google Scholar 

  • Swartz MA, Berk DA, Jain RK (1996) Transport in lymphatic capillaries. I. Macroscopic measurements using residence time distribution theory. Am J Physiol 270:H324–H329

    PubMed  CAS  Google Scholar 

  • Ting LH, Jahn JR, Jung JI, Shuman BR, Feghhi S, Han SJ, Rodriguez ML, Sniadecki NJ (2012) Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions. Am J Physiol Heart Circ Physiol 302:H2220–H2229

    Article  PubMed  CAS  Google Scholar 

  • Tojkander S, Gateva G, Lappalainen P (2012) Actin stress fibers—assembly, dynamics and biological roles. J Cell Sci 125:1855–1864

    Article  PubMed  CAS  Google Scholar 

  • Toyama Y, Peralta XG, Wells AR, Kiehart DP, Edwards GS (2008) Apoptotic force and tissue dynamics during Drosophila embryogenesis. Science 321:1683–1686

    Article  PubMed  CAS  Google Scholar 

  • Tremblay D, Cartier R, Mongrain R, Leask RL (2010) Regional dependency of the vascular smooth muscle cell contribution to the mechanical properties of the pig ascending aortic tissue. J Biomech 43:2448–2451

    Article  PubMed  Google Scholar 

  • Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ (2009) Physical forces during collective cell migration. Nat Phys 5:426–430

    Article  CAS  Google Scholar 

  • Trichet L, Le Digabel J, Hawkins RJ, Vedula SR, Gupta M, Ribrault C, Hersen P, Voituriez R, Ladoux B (2012) Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc Natl Acad Sci USA 109:6933–6938

    Article  PubMed  CAS  Google Scholar 

  • Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    Article  PubMed  CAS  Google Scholar 

  • Wang YL (2009) Traction forces and rigidity sensing of adherent cells. Conf Proc IEEE Eng Med Biol Soc 2009:3339–3340

    PubMed  Google Scholar 

  • Wang J, Pelling AE (2012) An approach to visualize the deformation of the intermediate filament cytoskeleton in response to locally applied forces. ISRN Cell Biol 2012:9

    Google Scholar 

  • Wang J, Su M, Fan J, Seth A, McCulloch CA (2002) Transcriptional regulation of a contractile gene by mechanical forces applied through integrins in osteoblasts. J Biol Chem 277:22889–22895

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Thampatty BP, Lin JS, Im HJ (2007) Mechanoregulation of gene expression in fibroblasts. Gene 391:1–15

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH (2010) Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc Natl Acad Sci USA 107:17194–17199

    Article  PubMed  CAS  Google Scholar 

  • Weber GF, Bjerke MA, DeSimone DW (2012) A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell 22:104–115

    Article  PubMed  CAS  Google Scholar 

  • Whittard JD, Akiyama SK (2001) Positive regulation of cell-cell and cell-substrate adhesion by protein kinase A. J Cell Sci 114:3265–3272

    PubMed  CAS  Google Scholar 

  • Wiig H, Swartz MA (2012) Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev 92:1005–1060

    Article  PubMed  CAS  Google Scholar 

  • Yasuda T, Akai Y, Kondo S, Becker BN, Homma T, Owada S, Ishida M, Harris RC (1996a) Alteration of cellular function in rat mesangial cells in response to mechanical stretch relaxation. Contrib Nephrol 118:222–228

    PubMed  CAS  Google Scholar 

  • Yasuda T, Kondo S, Homma T, Harris RC (1996b) Regulation of extracellular matrix by mechanical stress in rat glomerular mesangial cells. J Clin Invest 98:1991–2000

    Article  PubMed  CAS  Google Scholar 

  • Young JL, Engler AJ (2011) Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32:1002–1009

    Article  PubMed  CAS  Google Scholar 

  • Zemel A, Rehfeldt F, Brown AE, Discher DE, Safran SA (2010) Optimal matrix rigidity for stress fiber polarization in stem cells. Nat Phys 6:468–473

    Article  PubMed  CAS  Google Scholar 

  • Zhang MZ, Mai W, Li C, Cho SY, Hao C, Moeckel G, Zhao R, Kim I, Wang J, Xiong H, Wang H, Sato Y, Wu Y, Nakanuma Y, Lilova M, Pei Y, Harris RC, Li S, Coffey RJ, Sun L, Wu D, Chen XZ, Breyer MD, Zhao ZJ, McKanna JA, Wu G (2004) PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proc Natl Acad Sci USA 101:2311–2316

    Article  PubMed  CAS  Google Scholar 

  • Zhuang J, Yamada KA, Saffitz JE, Kleber AG (2000) Pulsatile stretch remodels cell-to-cell communication in cultured myocytes. Circ Res 87:316–322

    Article  PubMed  CAS  Google Scholar 

  • Zieman SJ, Melenovsky V, Kass DA (2005) Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 25:932–943

    Article  PubMed  CAS  Google Scholar 

  • Zink D, Fischer AH, Nickerson JA (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4:677–687

    Article  PubMed  CAS  Google Scholar 

  • Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506

    Article  PubMed  CAS  Google Scholar 

  • Zwerger M, Ho CY, Lammerding J (2011) Nuclear mechanics in disease. Annu Rev Biomed Eng 13:397–428

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.E.P. gratefully acknowledges generous support from the Canada Research Chairs (CRC) program and a Province of Ontario Early Researcher Award. N.V.B is grateful for a postdoctoral fellowship provided by the University of Ottawa Natural Sciences and Engineering Research Council (NSERC) CREATE program in Quantitative Biomedicine. This work was supported by an NSERC Discovery Grant, an NSERC Discovery Accelerator Supplement and a CRC Operating Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew E. Pelling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukoreshtliev, N.V., Haase, K. & Pelling, A.E. Mechanical cues in cellular signalling and communication. Cell Tissue Res 352, 77–94 (2013). https://doi.org/10.1007/s00441-012-1531-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1531-4

Keywords

Navigation