Skip to main content

Advertisement

Log in

Regenerating cardiac cells: insights from the bench and the clinic

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

A major challenge in cardiovascular regenerative medicine is the development of novel therapeutic strategies to restore the function of cardiac muscle in the failing heart. The heart has historically been regarded as a terminally differentiated organ that does not have the potential to regenerate. This concept has been updated by the discovery of cardiac stem and progenitor cells that reside in the adult mammalian heart. Whereas diverse types of adult cardiac stem or progenitor cells have been described, we still do not know whether these cells share a common origin. A better understanding of the physiology of cardiac stem and progenitor cells should advance the successful use of regenerative medicine as a viable therapy for heart disease. In this review, we summarize current knowledge of the various adult cardiac stem and progenitor cell types that have been discovered. We also review clinical trials presently being undertaken with adult stem cells to repair the injured myocardium in patients with coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmadian Kia N, Bahrami AR et al (2010) Comparative analysis of chemokine receptor’s expression in mesenchymal stem cells derived from human bone marrow and adipose tissue. J Mol Neurosci 44:178–185

    Article  PubMed  Google Scholar 

  • Asahara T, Murohara T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  • Assmus B, Schachinger V et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017

    Article  PubMed  Google Scholar 

  • Assmus B, Honold J et al (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355:1222–1232

    Article  PubMed  CAS  Google Scholar 

  • Bearzi C, Rota M et al (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073

    Article  PubMed  CAS  Google Scholar 

  • Beltrami AP, Barlucchi L et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  PubMed  CAS  Google Scholar 

  • Blin G, Nury D et al (2010) A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 120:1125–1139

    Article  PubMed  CAS  Google Scholar 

  • Bolli R, Chugh AR et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857

    Article  PubMed  Google Scholar 

  • Buckingham M, Meilhac S et al (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835

    Article  PubMed  CAS  Google Scholar 

  • Cai CL, Liang X et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889

    Article  PubMed  CAS  Google Scholar 

  • Caprioli A, Koyano-Nakagawa N et al (2011) Nkx2–5 represses Gata1 gene expression and modulates the cellular fate of cardiac progenitors during embryogenesis. Circulation 123:1633–1641

    Article  PubMed  CAS  Google Scholar 

  • Chen HT, Lee MJ, Chen CH, Chuang SC, Chang LF, Ho ML, Hung SH, Fu YC, Wang YH, Wang HI, Wang GJ, Kang L, Chang JK (2011) Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med 16:582–593

    Article  Google Scholar 

  • Chimenti I, Smith RR et al (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106:971–980

    Article  PubMed  CAS  Google Scholar 

  • Fazel S, Cimini M et al (2006) Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 116:1865–1877

    Article  PubMed  CAS  Google Scholar 

  • Ferreira-Martins J, Ogorek B et al (2012) Cardiomyogenesis in the developing heart is regulated by c-kit-positive cardiac stem cells. Circ Res 110:701–715

    Article  PubMed  CAS  Google Scholar 

  • Franco D, Moreno N et al (2007) Non-resident stem cell populations in regenerative cardiac medicine. Cell Mol Life Sci 64:683–691

    Article  PubMed  CAS  Google Scholar 

  • Hare JM, Traverse JH et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54:2277–2286

    Article  PubMed  CAS  Google Scholar 

  • Hill JM, Zalos G et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600

    Article  PubMed  Google Scholar 

  • Hu Y, Davison F et al (2003) Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells. Circulation 108:3122–3127

    Article  PubMed  Google Scholar 

  • Hu S, Liu S et al (2011) Isolated coronary artery bypass graft combined with bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure: a single-center, randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol 57:2409–2415

    Article  PubMed  Google Scholar 

  • Ikegame Y, Yamashita K et al (2011) Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 13:675–685

    Article  PubMed  CAS  Google Scholar 

  • Janssens S, Dubois C et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367:113–121

    Article  PubMed  Google Scholar 

  • Kang HJ, Kim HS et al (2004) Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363:751–756

    Article  PubMed  CAS  Google Scholar 

  • Kawase Y, Ladage D et al (2011) Rescuing the failing heart by targeted gene transfer. J Am Coll Cardiol 57:1169–1180

    Article  PubMed  Google Scholar 

  • Kocher AA, Schuster MD et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Article  PubMed  CAS  Google Scholar 

  • Koninckx R, Daniels A et al (2010) Mesenchymal stem cells or cardiac progenitors for cardiac repair? A comparative study. Cell Mol Life Sci 68:2141–2156

    Article  PubMed  Google Scholar 

  • Kubo H, Jaleel N et al (2008) Increased cardiac myocyte progenitors in failing human hearts. Circulation 118:649–657

    Article  PubMed  Google Scholar 

  • Laugwitz KL, Moretti A et al (2008) Islet1 cardiovascular progenitors: a single source for heart lineages? Development 135:193–205

    Article  PubMed  CAS  Google Scholar 

  • Leri A (2009) Human cardiac stem cells: the heart of a truth. Circulation 120:2515–2518

    Article  PubMed  Google Scholar 

  • Lunde K, Solheim S et al (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355:1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Madonna R, De Caterina R (2009) Adipose tissue: a new source for cardiovascular repair. J Cardiovasc Med (Hagerstown) 11(2):71–80

    Article  Google Scholar 

  • Makkar RR, Smith RR et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904

    Article  PubMed  Google Scholar 

  • Martin-Puig S, Wang Z et al (2008) Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2:320–331

    Article  PubMed  CAS  Google Scholar 

  • Meyer GP, Wollert KC et al (2006) Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113:1287–1294

    Article  PubMed  Google Scholar 

  • Moretti A, Caron L et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165

    Article  PubMed  CAS  Google Scholar 

  • Murry CE, Soonpaa MH et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  PubMed  CAS  Google Scholar 

  • Oh H, Bradfute SB et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100:12313–12318

    Article  PubMed  CAS  Google Scholar 

  • Orlic D, Kajstura J et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Planat-Benard V, Menard C et al (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223–229

    Article  PubMed  CAS  Google Scholar 

  • Rangappa S, Fen C et al (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779

    Article  PubMed  Google Scholar 

  • Rosenzweig A (2006) Cardiac cell therapy-mixed results from mixed cells. N Engl J Med 355:1274–1277

    Article  PubMed  CAS  Google Scholar 

  • Sandstedt J, Jonsson M et al (2010) C-kit+ CD45-cells found in the adult human heart represent a population of endothelial progenitor cells. Basic Res Cardiol 105:545–556

    Article  PubMed  Google Scholar 

  • Scarabelli TM, Gottlieb RA (2004) Functional and clinical repercussions of myocyte apoptosis in the multifaceted damage by ischemia/reperfusion injury: old and new concepts after 10 years of contributions. Cell Death Differ 11 (Suppl 2):S144–S152

    Article  PubMed  CAS  Google Scholar 

  • Schachinger V, Assmus B et al (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol 44:1690–1699

    Article  PubMed  Google Scholar 

  • Schachinger V, Erbs S et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221

    Article  PubMed  CAS  Google Scholar 

  • Smith RR, Barile L et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908

    Article  PubMed  Google Scholar 

  • Stamm C, Westphal B et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  • Strauer BE, Steinhoff G (2011) 10 years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol 58:1095–1104

    Article  PubMed  Google Scholar 

  • Struthers AD (2005) Pathophysiology of heart failure following myocardial infarction. Heart 91 (Suppl 2):ii14–ii16

    Article  PubMed  Google Scholar 

  • Tallini YN, Greene KS et al (2009) c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci USA 106:1808–1813

    Article  PubMed  CAS  Google Scholar 

  • Tang XL, Rokosh G et al (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121:293–305

    Article  PubMed  Google Scholar 

  • Tendera M, Wojakowski W et al (2009) Intracoronary infusion of bone marrow-derived selected CD34+ CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre myocardial regeneration by intracoronary infusion of selected population of stem cells in acute myocardial infarction (REGENT) trial. Eur Heart J 30:1313–1321

    Article  PubMed  Google Scholar 

  • Toma C, Pittenger MF et al (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  PubMed  Google Scholar 

  • van Ramshorst J, Bax JJ et al (2009) Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA 301:1997–2004

    Article  PubMed  Google Scholar 

  • Vidal MA, Walker NJ, Napoli E, Borjesson DL (2011) Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue, and umbilical cord tissue. Stem Cells Dev 21:273-83

    Article  PubMed  Google Scholar 

  • Vieira NM, Brandalise V, Zucconi E, Secco M, Strauss BE, Zatz M (2010) Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant 19:279–289

    Article  PubMed  CAS  Google Scholar 

  • Visconti RP, Ebihara Y et al (2006) An in vivo analysis of hematopoietic stem cell potential: hematopoietic origin of cardiac valve interstitial cells. Circ Res 98:690–696

    Article  PubMed  CAS  Google Scholar 

  • Wollert KC, Meyer GP et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148

    Article  PubMed  Google Scholar 

  • Wu SM, Fujiwara Y et al (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127:1137–1150

    Article  PubMed  CAS  Google Scholar 

  • Yao K, Huang R et al (2008) Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Heart 94:1147–1153

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Medjaden Bioscience for editorial assistance in the preparation of this manuscript.

Disclosures

No conflicts of interest, financial or otherwise, are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YueSheng Huang.

Additional information

Miao Teng and Xiaohui Zhao contributed equally to this work.

This work was carried out under the Program of National Natural Science Foundation of China (no. 81101425), Program of State Key Laboratory (no. SKLZZ201121) and Key Project of China National Programs for Basic Research and Development (no. 2012CB518101).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, M., Zhao, X. & Huang, Y. Regenerating cardiac cells: insights from the bench and the clinic. Cell Tissue Res 350, 189–197 (2012). https://doi.org/10.1007/s00441-012-1484-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1484-7

Keywords