Skip to main content
Log in

AMPK activation by AICAR inhibits myogenic differentiation and myostatin expression in Cattle

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

AMP-activated protein kinase (AMPK) regulates metabolism in skeletal muscle, and myostatin (MSTN) negatively regulates skeletal muscle development and growth. In the present study, AMPK activation and the relationship between AMPK and MSTN during myogenic differentiation were investigated in cultures derived from bovine skeletal muscle. Myoblasts capable of forming myotubes were obtained from bovine skeletal muscle and treated with AICAR to activate AMPK, resulting in suppressed myotube formation. AICAR treatment significantly reduced the expression of MSTN mRNA during myogenic differentiation. Combined treatment with AICAR and MSTN suppressed myotube formation to a greater extent than AICAR alone. SB431542, an inhibitor of MSTN signaling, promoted myotube formation during myogenic differentiation. However, simultaneous treatment with AICAR blocked this effect of SB431542. Therefore, AMPK activation inhibits myogenic differentiation but may suppress MSTN expression to balance muscle development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chen Y, Ye J, Cao L, Zhang Y, Xia W, Zhu D (2010) Myostatin regulates glucose metabolism via the AMP-activated protein kinase pathway in skeletal muscle cells. Int J Biochem Cell Biol 42:2072–2081

    Article  PubMed  CAS  Google Scholar 

  • Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409

    Article  PubMed  CAS  Google Scholar 

  • Feldman BJ, Streeper RS, Farese RV Jr, Yamamoto KR (2006) Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proc Natl Acad Sci USA 103:15675–15680

    Article  PubMed  CAS  Google Scholar 

  • Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V (2008) Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14:661–673

    Article  PubMed  CAS  Google Scholar 

  • Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17:71–74

    Article  PubMed  CAS  Google Scholar 

  • Guo T, Jou W, Chanturiya T, Portas J, Gavrilova O, McPherron AC (2009) Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS One 4:e4937

    Article  PubMed  Google Scholar 

  • Hardie DG (2005) New roles for the LKB1– > AMPK pathway. Curr Opin Cell Biol 17:167–173

    Article  PubMed  CAS  Google Scholar 

  • Heinemeier KM, Olesen JL, Schjerling P, Haddad F, Langberg H, Baldwin KM, Kjaer M (2007) Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol 102:573–581

    Article  PubMed  CAS  Google Scholar 

  • Hirai S, Matsumoto H, Hino N, Kawachi H, Matsui T, Yano H (2007) Myostatin inhibits differentiation of bovine preadipocyte. Domest Anim Endocrinol 32:1–14

    Article  PubMed  CAS  Google Scholar 

  • Kambadur R, Sharma M, Smith TP, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7:910–916

    PubMed  CAS  Google Scholar 

  • Kim JS, Cross JM, Bamman MM (2005) Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol Endocrinol Metab 288:E1110–E1119

    Article  PubMed  CAS  Google Scholar 

  • Koh HJ, Brandauer J, Goodyear LJ (2008) LKB1 and AMPK and the regulation of skeletal muscle metabolism. Curr Opin Clin Nutr Metab Care 11:227–232

    Article  PubMed  CAS  Google Scholar 

  • Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277:49831–49840

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98:9306–9311

    Article  PubMed  CAS  Google Scholar 

  • Matsakas A, Friedel A, Hertrampf T, Diel P (2005) Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat. Acta Physiol Scand 183:299–307

    Article  PubMed  CAS  Google Scholar 

  • McFadden JW, Corl BA (2009) Activation of AMP-activated protein kinase (AMPK) inhibits fatty acid synthesis in bovine mammary epithelial cells. Biochem Biophys Res Commun 390:388–393

    Article  PubMed  CAS  Google Scholar 

  • McPherron AC, Lee SJ (2002) Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 109:595–601

    PubMed  CAS  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    Article  PubMed  CAS  Google Scholar 

  • Miyake M, Hayashi S, Taketa Y, Iwasaki S, Watanabe K, Ohwada S, Aso H, Yamaguchi T (2010) Myostatin down-regulates the IGF-2 expression via ALK-Smad signaling during myogenesis in cattle. Anim Sci J 81:223–229

    Article  PubMed  CAS  Google Scholar 

  • Miyake M, Hayashi S, Iwasaki S, Uchida T, Watanabe K, Ohwada S, Aso H, Yamaguchi T (2011) TIEG1 negatively controls the myoblast pool indispensable for fusion during myogenic differentiation of C2C12 cells. J Cell Physiol 226:1128–1136

    Article  PubMed  CAS  Google Scholar 

  • Mounier R, Lantier L, Leclerc J, Sotiropoulos A, Pende M, Daegelen D, Sakamoto K, Foretz M, Viollet B (2009) Important role for AMPKalpha1 in limiting skeletal muscle cell hypertrophy. FASEB J 23:2264–2273

    Article  PubMed  CAS  Google Scholar 

  • Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125:1275–1287

    Article  PubMed  CAS  Google Scholar 

  • Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L (2003) Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 23:7230–7242

    Article  PubMed  CAS  Google Scholar 

  • Sabourin LA, Rudnicki MA (2000) The molecular regulation of myogenesis. Clin Genet 57:16–25

    Article  PubMed  CAS  Google Scholar 

  • Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida K, Nakatani M, Uezumi A, Murakami T, Cui X (2008) Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer. Endocr J 55:11–21

    Article  PubMed  CAS  Google Scholar 

  • Watt KI, Jaspers RT, Atherton P, Smith K, Rennie MJ, Ratkevicius A, Wackerhage H (2010) SB431542 treatment promotes the hypertrophy of skeletal muscle fibers but decreases specific force. Muscle Nerve 41:624–629

    PubMed  CAS  Google Scholar 

  • Williamson DL, Butler DC, Alway SE (2009) AMPK inhibits myoblast differentiation through a PGC-1alpha-dependent mechanism. Am J Physiol Endocrinol Metab 297:E304–E314

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, McFarlane C, Lokireddy S, Bonala S, Ge X, Masuda S, Gluckman PD, Sharma M, Kambadur R (2011) Myostatin-deficient mice exhibit reduced insulin resistance through activating the AMP-activated protein kinase signalling pathway. Diabetologia 54:1491–1501

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant-in-Aid for Scientific Research (22880006) from the Ministry of Education, Culture, Sports, Science and Technology (to M.M), and the Programme for Promotion of Basic and Applied Research for Innovations in Bio-oriented Industry (to T.Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyake, M., Takahashi, H., Kitagawa, E. et al. AMPK activation by AICAR inhibits myogenic differentiation and myostatin expression in Cattle. Cell Tissue Res 349, 615–623 (2012). https://doi.org/10.1007/s00441-012-1422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1422-8

Keywords

Navigation