Skip to main content
Log in

Cell-specific processing and release of the hormone-like precursor and candidate tumor suppressor gene product, Ecrg4

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The human open reading frame C2orf40 encodes esophageal cancer-related gene-4 (Ecrg4), a newly recognized neuropeptide-like precursor protein whose gene expression by cells in vitro, over-expression in mice in vivo, and knock-down in zebrafish affects cell proliferation, migration and senescence, progenitor cell survival and differentiation, and inflammatory function. Unlike traditionally secreted neuropeptide precursors, however, we find that Ecrg4 localizes to the epithelial cell surface and remains tethered after secretion. Here, we used cell surface biotinylation to establish that 14-kDa Ecrg4 localizes to the cell surface of prostate (PC3) or kidney (HEK) epithelial cells after transfection. Accordingly, this Ecrg4 is resistant to washing cells with neutral, high salt (2 M NaCl), acidic (50 mM glycine, pH 2.8), or basic (100 mM Na2CO3, pH 11) buffers. Mutagenesis of Ecrg4 established that cell tethering was mediated by an NH2-terminus hydrophobic leader sequence that enabled both trafficking to the surface and tethering. Immunoblotting analyses, however, showed that different cells process Ecrg4 differently. Whereas PC3 cells release cell surface Ecrg4 to generate soluble Ecrg4 peptides of 6–14 kDa, HEK cells do neither, and the 14-kDa precursor resembles a sentinel attached to the cell surface. Because a phorbol ester treatment of PC3 cells stimulated Ecrg4 release from, and processing at, the cell surface, these data are consistent with a multifunctional role for Ecrg4 that is dependent on its cell of origin and the molecular form produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baird A, Coimbra R, Dang X, Lopez N, Lee J, Krzyzaniak M, Winfield R, Potenza B, Eliceiri BE (2012) Cell surface localization and release of the candidate tumor suppressor Ecrg4 from polymorphonuclear cells and monocytes activates macrophages J Leukocyte Biol. doi:10.1189/jlb.1011503

  • Clark HF, Gurney AL, Abaya E, Baker K, Baldwin D, Brush J, Chen J, Chow B, Chui C, Crowley C, Currell B, Deuel B, Dowd P, Eaton D, Foster J, Grimaldi C, Gu Q, Hass PE, Heldens S, Huang A, Kim HS, Klimowski L, Jin Y, Johnson S, Lee J, Lewis L, Liao D, Mark M, Robbie E, Sanchez C, Schoenfeld J, Seshagiri S, Simmons L, Singh J, Smith V, Stinson J, Vagts A, Vandlen R, Watanabe C, Wieand D, Woods K, Xie MH, Yansura D, Yi S, Yu G, Yuan J, Zhang M, Zhang Z, Goddard A, Wood WI, Godowski P, Gray A (2003) The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. Genome Res 13(10):2265–2270

    Article  PubMed  CAS  Google Scholar 

  • Dempsey PJ, Meise KS, Coffey RJ (2003) Basolateral sorting of transforming growth factor-alpha precursor in polarized epithelial cells: characterization of cytoplasmic domain determinants. Exp Cell Res 285(2):159–174

    Article  PubMed  CAS  Google Scholar 

  • El Meskini R, Galano GJ, Marx R, Mains RE, Eipper BA (2001a) Targeting of membrane proteins to the regulated secretory pathway in anterior pituitary endocrine cells. J Biol Chem 276(5):3384–3393

    Article  PubMed  CAS  Google Scholar 

  • El Meskini R, Jin L, Marx R, Bruzzaniti A, Lee J, Emeson R, Mains R (2001b) A signal sequence is sufficient for green fluorescent protein to be routed to regulated secretory granules. Endocrinology 142(2):864–873

    Article  PubMed  CAS  Google Scholar 

  • Feige JJ, Baird A (1995) Crinopexy: extracellular regulation of growth factor action. Kidney Int Suppl 49:S15–S18

    PubMed  CAS  Google Scholar 

  • Garcia I, Olleros ML, Quesniaux VF, Jacobs M, Allie N, Nedospasov SA, Szymkowski DE, Ryffel B (2011) Roles of soluble and membrane TNF and related ligands in mycobacterial infections: effects of selective and non-selective TNF inhibitors during infection. Adv Exp Med Biol 691:187–201

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez AM, Podvin S, Lin SY, Miller MC, Botfield H, Leadbeater WE, Roberton A, Dang X, Knowling SE, Cardenas-Galindo E, Donahue JE, Stopa EG, Johanson CE, Coimbra R, Eliceiri BP, Baird A (2011) Ecrg4 expression and its product augurin in the choroid plexus: impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury. Fluids Barriers CNS 8(1):6

    Article  PubMed  CAS  Google Scholar 

  • Gotze S, Feldhaus V, Traska T, Wolter M, Reifenberger G, Tannapfel A, Kuhnen C, Martin D, Muller O, Sievers S (2009) ECRG4 is a candidate tumor suppressor gene frequently hypermethylated in colorectal carcinoma and glioma. BMC Cancer 9:447

    Article  PubMed  Google Scholar 

  • Hathout Y (2007) Approaches to the study of the cell secretome. Expert Rev Proteomics 4(2):239–248

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama S, Nanba D (2005) ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk. Biochim Biophys Acta 1751(1):110–117

    PubMed  CAS  Google Scholar 

  • Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T (2010) Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford) 49(7):1215–1228

    Article  CAS  Google Scholar 

  • Huh YH, Ryu JH, Shin S, Lee DU, Yang S, Oh KS, Chun CH, Choi JK, Song WK, Chun JS (2009) Esophageal cancer related gene 4 (ECRG4) is a marker of articular chondrocyte differentiation and cartilage destruction. Gene 448(1):7–15

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto R, Mekada E (2000) Heparin-binding EGF-like growth factor: a juxtacrine growth factor. Cytokine Growth Factor Rev 11(4):335–344

    Article  PubMed  CAS  Google Scholar 

  • Kujuro Y, Suzuki N, Kondo T (2010) Esophageal cancer-related gene 4 is a secreted inducer of cell senescence expressed by aged CNS precursor cells. Proc Natl Acad Sci USA 107(18):8259–8264

    Article  PubMed  CAS  Google Scholar 

  • Le Gall SM, Auger R, Dreux C, Mauduit P (2003) Regulated cell surface pro-EGF ectodomain shedding is a zinc metalloprotease-dependent process. J Biol Chem 278(46):45255–45268

    Article  PubMed  Google Scholar 

  • Lee EY, Muller WJ (2010) Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol 2(10):a003236

    Article  PubMed  CAS  Google Scholar 

  • Lemberg MK (2011) Intramembrane proteolysis in regulated protein trafficking. Traffic 12(9):1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Li LW, Yu XY, Yang Y, Zhang CP, Guo LP, Lu SH (2009) Expression of esophageal cancer related gene 4 (ECRG4), a novel tumor suppressor gene, in esophageal cancer and its inhibitory effect on the tumor growth in vitro and in vivo. Int J Cancer 125(7):1505–1513

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zhang C, Li X, Lu S, Zhou Y (2010a) The candidate tumor suppressor gene ECRG4 inhibits cancer cells migration and invasion in esophageal carcinoma. J Exp Clin Cancer Res 29:133

    Article  PubMed  CAS  Google Scholar 

  • Li W, Liu X, Zhang B, Qi D, Zhang L, Jin Y, Yang H (2010b) Overexpression of candidate tumor suppressor ECRG4 inhibits glioma proliferation and invasion. J Exp Clin Cancer Res 29:89

    Article  PubMed  Google Scholar 

  • Li LW, Li YY, Li XY, Zhang CP, Zhou Y, Lu SH (2011) A novel tumor suppressor gene ECRG4 interacts directly with TMPRSS11A (ECRG1) to inhibit cancer cell growth in esophageal carcinoma. BMC Cancer 11:52

    Article  PubMed  CAS  Google Scholar 

  • Mirabeau O, Perlas E, Severini C, Audero E, Gascuel O, Possenti R, Birney E, Rosenthal N, Gross C (2007) Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res 17(3):320–327

    Article  PubMed  CAS  Google Scholar 

  • Mori Y, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Kurehara H, Mori R, Tomoda K, Ogawa R, Katada T, Harata K, Fujii Y (2007) Expression of ECRG4 is an independent prognostic factor for poor survival in patients with esophageal squamous cell carcinoma. Oncol Rep 18(4):981–985

    PubMed  CAS  Google Scholar 

  • Mustafa SA, Hoheisel JD, Alhamdani MS (2011) Secretome profiling with antibody microarrays. Mol Biosyst 7(6):1795–1801

    Article  PubMed  CAS  Google Scholar 

  • Ozawa A, Lick AN, Lindberg I (2011) Processing of proaugurin is required to suppress proliferation of tumor cell lines. Mol Endocrinol 25(5):776–784

    Article  PubMed  CAS  Google Scholar 

  • Podvin S, Gonzalez AM, Miller MC, Dang X, Botfield H, Donahue JE, Kurabi A, Boissaud-Cooke M, Rossi R, Leadbeater WE, Johanson CE, Coimbra R, Stopa EG, Eliceiri BP, Baird A (2011) Esophageal cancer related gene-4 is a choroid plexus-derived injury response gene: evidence for a biphasic response in early and late brain injury. PLoS One 6(9):e24609

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot AE (2006) The biological relevance of chemokine-proteoglycan interactions. Biochem Soc Trans 34(Pt 3):422–426

    PubMed  CAS  Google Scholar 

  • Rall LB, Scott J, Bell GI, Crawford RJ, Penschow JD, Niall HD, Coghlan JP (1985) Mouse prepro-epidermal growth factor synthesis by the kidney and other tissues. Nature 313(5999):228–231

    Article  PubMed  CAS  Google Scholar 

  • Rothenberg SM, Settleman J (2010) Discovering tumor suppressor genes through genome-wide copy number analysis. Curr Genomics 11(5):297–310

    Article  PubMed  CAS  Google Scholar 

  • Schafer A, Schulz C, Eigenthaler M, Fraccarollo D, Kobsar A, Gawaz M, Ertl G, Walter U, Bauersachs J (2004) Novel role of the membrane-bound chemokine fractalkine in platelet activation and adhesion. Blood 103(2):407–412

    Article  PubMed  Google Scholar 

  • Schuster-Bockler B, Bateman A (2007) An introduction to hidden Markov models. Curr Protoc Bioinformatics A3, 2007a:1.3

  • Southey BR, Rodriguez-Zas SL, Sweedler JV (2009) Characterization of the prohormone complement in cattle using genomic libraries and cleavage prediction approaches. BMC Genomics 10:228

    Article  PubMed  Google Scholar 

  • Tadross JA, Patterson M, Suzuki K, Beale KE, Boughton CK, Smith KL, Moore S, Ghatei MA, Bloom SR (2010) Augurin stimulates the hypothalamo-pituitary-adrenal axis via the release of corticotrophin-releasing factor in rats. Br J Pharmacol 159(8):1663–1671

    Article  PubMed  CAS  Google Scholar 

  • Tegge AN, Southey BR, Sweedler JV, Rodriguez-Zas SL (2008) Comparative analysis of neuropeptide cleavage sites in human, mouse, rat, and cattle. Mamm Genome 19(2):106–120

    Article  PubMed  CAS  Google Scholar 

  • Trudel C, Faure-Desire V, Florkiewicz RZ, Baird A (2000) Translocation of FGF2 to the cell surface without release into conditioned media. J Cell Physiol 185(2):260–268

    Article  PubMed  CAS  Google Scholar 

  • Yue CM, Deng DJ, Bi MX, Guo LP, Lu SH (2003) Expression of ECRG4, a novel esophageal cancer-related gene, downregulated by CpG island hypermethylation in human esophageal squamous cell carcinoma. World J Gastroenterol 9(6):1174–1178

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors declare no conflicts of interest and are indebted to Emelie Amburn and Alexandra Borboa for their expert laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Baird.

Additional information

Research was supported by National Institutes of Health grants P20-GM078421, EY018479, HL73396, DK085871 and supplemental funding through NIGMS and NEI through the American Recovery Act (ARRA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang, X., Podvin, S., Coimbra, R. et al. Cell-specific processing and release of the hormone-like precursor and candidate tumor suppressor gene product, Ecrg4. Cell Tissue Res 348, 505–514 (2012). https://doi.org/10.1007/s00441-012-1396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1396-6

Keywords