Skip to main content
Log in

Expression patterns of anoctamin 1 and anoctamin 2 chloride channels in the mammalian nose

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Calcium-activated chloride channels are expressed in chemosensory neurons of the nose and contribute to secretory processes and sensory signal transduction. These channels are thought to be members of the family of anoctamins (alternative name: TMEM16 proteins), which are opened by micromolar concentrations of intracellular Ca2+. Two family members, ANO 1 (TMEM16A) and ANO 2 (TMEM16B), are expressed in the various sensory and respiratory tissues of the nose. We have examined the tissue specificity and sub-cellular localization of these channels in the nasal respiratory epithelium and in the five chemosensory organs of the nose: the main olfactory epithelium, the septal organ of Masera, the vomeronasal organ, the Grueneberg ganglion and the trigeminal system. We have found that the two channels show mutually exclusive expression patterns. ANO 1 is present in the apical membranes of various secretory epithelia in which it is co-localized with the water channel aquaporin 5. It has also been detected in acinar cells and duct cells of subepithelial glands and in the supporting cells of sensory epithelia. In contrast, ANO 2 expression is restricted to chemosensory neurons in which it has been detected in microvillar and ciliary surface structures. The different expression patterns of ANO 1 and ANO 2 have been observed in the olfactory, vomeronasal and respiratory epithelia. No expression has been detected in the Grueneberg ganglion or trigeminal sensory fibers. On the basis of this differential expression, we derive the main functional features of ANO 1 and ANO 2 chloride channels in the nose and suggest their significance for nasal physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ablimit A, Matsuzaki T, Tajika Y, Aoki T, Hagiwara H, Takata K (2006) Immunolocalization of water channel aquaporins in the nasal olfactory mucosa. Arch Histol Cytol 69:1–12

    Article  PubMed  CAS  Google Scholar 

  • Adams DR (1992) Fine structure of the vomeronasal and septal olfactory epithelia and of glandular structures. Microsc Res Tech 23:86–97

    Article  PubMed  CAS  Google Scholar 

  • Asan E, Drenckhahn D (2005) Immunocytochemical characterization of two types of microvillar cells in rodent olfactory epithelium. Histochem Cell Biol 123:157–168

    Article  PubMed  CAS  Google Scholar 

  • Billig GM, Pal B, Fidzinski P, Jentsch TJ (2011) Ca2+-activated Cl- currents are dispensable for olfaction. Nat Neurosci 14:763–769

    Article  PubMed  CAS  Google Scholar 

  • Bojsen-Moller F (1964) Topography of the nasal glands in rats and some other mammals. Anat Rec 150:11–24

    Article  PubMed  CAS  Google Scholar 

  • Bönigk W, Bradley J, Muller F, Sesti F, Boekhoff I, Ronnett GV, Kaupp UB, Frings S (1999) The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits. J Neurosci 19:5332–5347

    PubMed  Google Scholar 

  • Brand G (2006) Olfactory/trigeminal interactions in nasal chemoreception. Neurosci Biobehav Rev 30:908–917

    Article  PubMed  Google Scholar 

  • Brechbuhl J, Klaey M, Broillet MC (2008) Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 321:1092–1095

    Article  PubMed  Google Scholar 

  • Breipohl W (1972) Structure of the glands of Bowman in the regio olfactoria of white mice. A light- and electronmicroscopy study. Z Zellforsch Mikrosk Anat 131:329–346

    Article  PubMed  CAS  Google Scholar 

  • Brunet LJ, Gold GH, Ngai J (1996) General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17:681–693

    Article  PubMed  CAS  Google Scholar 

  • Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, An H, Li T, Liu Y, Gao C, Guo P, Zhang H, Zhan Y (2011) Direct or indirect regulation of calcium-activated chloride channel by calcium. J Membr Biol 240:121–129

    Article  PubMed  CAS  Google Scholar 

  • Doty RL, Brugger WE, Jurs PC, Orndorff MA, Snyder PJ, Lowry LD (1978) Intranasal trigeminal stimulation from odorous volatiles: psychometric responses from anosmic and normal humans. Physiol Behav 20:175–185

    Article  PubMed  CAS  Google Scholar 

  • Dutta AK, Khimji AK, Kresge C, Bugde A, Dougherty M, Esser V, Ueno Y, Glaser SS, Alpini G, Rockey DC, Feranchak AP (2011) Identification and functional characterization of TMEM16A, a Ca2+-activated Cl- channel activated by extracellular nucleotides, in biliary epithelium. J Biol Chem 286:766–776

    Article  PubMed  CAS  Google Scholar 

  • Ferrera L, Caputo A, Ubby I, Bussani E, Zegarra-Moran O, Ravazzolo R, Pagani F, Galietta LJ (2009) Regulation of TMEM16A chloride channel properties by alternative splicing. J Biol Chem 284:33360–33368

    Article  PubMed  CAS  Google Scholar 

  • Ferrera L, Scudieri P, Sondo E, Caputo A, Caci E, Zegarra-Moran O, Ravazzolo R, Galietta LJ (2011) A minimal isoform of the TMEM16A protein associated with chloride channel activity. Biochim Biophys Acta 1808:2214–2223

    Article  PubMed  CAS  Google Scholar 

  • Finger TE, St Jeor VL, Kinnamon JC, Silver WL (1990) Ultrastructure of substance P- and CGRP-immunoreactive nerve fibers in the nasal epithelium of rodents. J Comp Neurol 294:293–305

    Article  PubMed  CAS  Google Scholar 

  • Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL (2003) Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA 100:8981–8986

    Article  PubMed  CAS  Google Scholar 

  • Fleischer J, Schwarzenbacher K, Besser S, Hass N, Breer H (2006) Olfactory receptors and signalling elements in the Grueneberg ganglion. J Neurochem 98:543–554

    Article  PubMed  CAS  Google Scholar 

  • Fuss SH, Omura M, Mombaerts P (2005) The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Eur J Neurosci 22:2649–2654

    Article  PubMed  Google Scholar 

  • Gerhold KA, Bautista DM (2009) Molecular and cellular mechanisms of trigeminal chemosensation. Ann N Y Acad Sci 1170:184–189

    Article  PubMed  CAS  Google Scholar 

  • Getchell TV (1988) Induction of odorant-evoked current transients in Xenopus oocytes injected with mRNA isolated from the olfactory mucosa of Rana pipiens. Neurosci Lett 91:217–221

    Article  PubMed  CAS  Google Scholar 

  • Getchell ML, Getchell TV (1992) Fine structural aspects of secretion and extrinsic innervation in the olfactory mucosa. Microsc Res Tech 23:111–127

    Article  PubMed  CAS  Google Scholar 

  • Grosmaitre X, Santarelli LC, Tan J, Luo M, Ma M (2007) Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat Neurosci 10:348–354

    Article  PubMed  CAS  Google Scholar 

  • Grubb BR, Rogers TD, Kulaga HM, Burns KA, Wonsetler RL, Reed RR, Ostrowski LE (2007) Olfactory epithelia exhibit progressive functional and morphological defects in CF mice. Am J Physiol Cell Physiol 293:C574–C583

    Article  PubMed  CAS  Google Scholar 

  • Hengl T, Kaneko H, Dauner K, Vocke K, Frings S, Möhrlen F (2010) Molecular components of signal amplification in olfactory sensory cilia. Proc Natl Acad Sci USA 107:6052–6057

    Article  PubMed  CAS  Google Scholar 

  • Hofer D, Shin DW, Drenckhahn D (2000) Identification of cytoskeletal markers for the different microvilli and cell types of the rat vomeronasal sensory epithelium. J Neurocytol 29:147–156

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY (2009) Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci USA 106:21413–21418

    Article  PubMed  CAS  Google Scholar 

  • Hummel T, Livermore A (2002) Intranasal chemosensory function of the trigeminal nerve and aspects of its relation to olfaction. Int Arch Occup Environ Heal 75:305–313

    Article  Google Scholar 

  • Imai T, Sakano H (2008) Odorant receptor-mediated signaling in the mouse. Curr Opin Neurobiol 18:251–260

    Article  PubMed  CAS  Google Scholar 

  • Kaneko H, Putzier I, Frings S, Kaupp UB, Gensch T (2004) Chloride accumulation in mammalian olfactory sensory neurons. J Neurosci 24:7931–7938

    Article  PubMed  CAS  Google Scholar 

  • Kashiwayanagi M, Kawahara H, Kanaki K, Nagasawa F, Kurihara K (1996) Ca2+ and Cl dependence of the turtle olfactory response to odorants and forskolin. Comp Biochem Physiol A Physiol 115:43–52

    Article  PubMed  CAS  Google Scholar 

  • Kidd JF, Thorn P (2000) Intracellular Ca2+ and Cl channel activation in secretory cells. Annu Rev Physiol 62:493–513

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Ma L, Yu CR (2011) Requirement of calcium-activated chloride channels in the activation of mouse vomeronasal neurons. Nat Commun 2:365

    Article  PubMed  Google Scholar 

  • Kleene SJ (2008) The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 33:839–859

    Article  PubMed  CAS  Google Scholar 

  • Kleene SJ, Gesteland RC (1991) Calcium-activated chloride conductance in frog olfactory cilia. J Neurosci 11:3624–3629

    PubMed  CAS  Google Scholar 

  • Kleene SJ, Pun RY (1996) Persistence of the olfactory receptor current in a wide variety of extracellular environments. J Neurophysiol 75:1386–1391

    PubMed  CAS  Google Scholar 

  • Klimmeck D, Daiber PC, Bruhl A, Baumann A, Frings S, Möhrlen F (2009) Bestrophin 2: an anion channel associated with neurogenesis in chemosensory systems. J Comp Neurol 515:585–599

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi T, Yau KW (1993) Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363:71–74

    Article  PubMed  CAS  Google Scholar 

  • Lee AC, He J, Ma M (2011) Olfactory marker protein is critical for functional maturation of olfactory sensory neurons and development of mother preference. J Neurosci 31:2974–2982

    Article  PubMed  CAS  Google Scholar 

  • Levai O, Strotmann J (2003) Projection pattern of nerve fibers from the septal organ: DiI-tracing studies with transgenic OMP mice. Histochem Cell Biol 120:483–492

    Article  PubMed  CAS  Google Scholar 

  • Liman ER, Corey DP, Dulac C (1999) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci USA 96:5791–5796

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Arellano J, Slotnick B, Restrepo D (2004) Odors detected by mice deficient in cyclic nucleotide-gated channel subunit A2 stimulate the main olfactory system. J Neurosci 24:3703–3710

    Article  PubMed  CAS  Google Scholar 

  • Liu CY, Fraser SE, Koos DS (2009) Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway. J Comp Neurol 516:36–48

    Article  PubMed  CAS  Google Scholar 

  • Lowe G, Gold GH (1993) Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366:283–286

    Article  PubMed  CAS  Google Scholar 

  • Lu DC, Zhang H, Zador Z, Verkman AS (2008) Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J 22:3216–3223

    Article  PubMed  CAS  Google Scholar 

  • Ma M (2007) Encoding olfactory signals via multiple chemosensory systems. Crit Rev Biochem Mol Biol 42:463–480

    Article  PubMed  CAS  Google Scholar 

  • Ma M (2010) Multiple olfactory subsystems convey various sensory signals. In: Menini A (ed) The neurobiology of olfaction. Frontiers in neuroscience. CRC Press, Boca Raton, pp 225–240

    Google Scholar 

  • Ma M, Grosmaitre X, Iwema CL, Baker H, Greer CA, Shepherd GM (2003) Olfactory signal transduction in the mouse septal organ. J Neurosci 23:317–324

    PubMed  CAS  Google Scholar 

  • Mamasuew K, Michalakis S, Breer H, Biel M, Fleischer J (2010) The cyclic nucleotide-gated ion channel CNGA3 contributes to coolness-induced responses of Grueneberg ganglion neurons. Cell Mol Life Sci 67:1859–1869

    Article  PubMed  CAS  Google Scholar 

  • Mamasuew K, Hofmann N, Breer H, Fleischer J (2011a) Grueneberg ganglion neurons are activated by a defined set of odorants. Chem Senses 36:271–282

    Article  PubMed  CAS  Google Scholar 

  • Mamasuew K, Hofmann N, Kretzschmann V, Biel M, Yang RB, Breer H, Fleischer J (2011b) Chemo- and thermosensory responsiveness of Grueneberg ganglion neurons relies on cyclic guanosine monophosphate signaling elements. Neurosignals 19:198–209

    Article  PubMed  CAS  Google Scholar 

  • Manoury B, Tamuleviciute A, Tammaro P (2010) TMEM16A/anoctamin 1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells. J Physiol (Lond) 588:2305–2314

    Article  CAS  Google Scholar 

  • Marshall DA, Maruniak JA (1986) Masera's organ responds to odorants. Brain Res 366:329–332

    Article  PubMed  CAS  Google Scholar 

  • Mayer U, Ungerer N, Klimmeck D, Warnken U, Schnolzer M, Frings S, Möhrlen F (2008) Proteomic analysis of a membrane preparation from rat olfactory sensory cilia. Chem Senses 33:145–162

    Article  PubMed  CAS  Google Scholar 

  • Menco BP (1992) Lectins bind differentially to cilia and microvilli of major and minor cell populations in olfactory and nasal respiratory epithelia. Microsc Res Tech 23:181–199

    Article  PubMed  CAS  Google Scholar 

  • Menco BP, Birrell GB, Fuller CM, Ezeh PI, Keeton DA, Benos DJ (1998) Ultrastructural localization of amiloride-sensitive sodium channels and Na+, K+-ATPase in the rat's olfactory epithelial surface. Chem Senses 23:137–149

    Article  PubMed  CAS  Google Scholar 

  • Merigo F, Mucignat-Caretta C, Cristofoletti M, Zancanaro C (2011) Epithelial membrane transporters expression in the developing to adult mouse vomeronasal organ and olfactory mucosa. Dev Neurobiol 71:854–869

    Article  PubMed  CAS  Google Scholar 

  • Mombaerts P (1996) Targeting olfaction. Curr Opin Neurobiol 6:481–486

    Article  PubMed  CAS  Google Scholar 

  • Munger SD, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–444

    Article  PubMed  CAS  Google Scholar 

  • Namkung W, Thiagarajah JR, Phuan PW, Verkman AS (2010) Inhibition of Ca2+-activated Cl- channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J 24:4178–4186

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH, Tepikin AV (2008) Polarized calcium signaling in exocrine gland cells. Annu Rev Physiol 70:273–299

    Article  PubMed  CAS  Google Scholar 

  • Pifferi S, Dibattista M, Menini A (2009) TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch 458:1023–1038

    Article  PubMed  CAS  Google Scholar 

  • Pifferi S, Cenedese V, Menini A (2011) Anoctamin2/TMEM16B: a calcium-activated chloride channel in olfactorytransduction. Exp Physiol (in press)

  • Potter SM, Zheng C, Koos DS, Feinstein P, Fraser SE, Mombaerts P (2001) Structure and emergence of specific olfactory glomeruli in the mouse. J Neurosci 21:9713–9723

    PubMed  CAS  Google Scholar 

  • Rasche S, Toetter B, Adler J, Tschapek A, Doerner JF, Kurtenbach S, Hatt H, Meyer H, Warscheid B, Neuhaus EM (2010) Tmem16b is specifically expressed in the cilia of olfactory sensory neurons. Chem Senses 35:239–245

    Article  PubMed  CAS  Google Scholar 

  • Reisert J, Bauer PJ, Yau KW, Frings S (2003) The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J Gen Physiol 122:349–363

    Article  PubMed  CAS  Google Scholar 

  • Reisert J, Lai J, Yau KW, Bradley J (2005) Mechanism of the excitatory Cl- response in mouse olfactory receptor neurons. Neuron 45:553–561

    Article  PubMed  CAS  Google Scholar 

  • Rochelle LG, Li DC, Ye H, Lee E, Talbot CR, Boucher RC (2000) Distribution of ion transport mRNAs throughout murine nose and lung. Am J Physiol Lung Cell Mol Physiol 279:L14–L24

    PubMed  CAS  Google Scholar 

  • Rock JR, Futtner CR, Harfe BD (2008) The transmembrane protein TMEM16A is required for normal development of the murine trachea. Dev Biol 321:141–149

    Article  PubMed  CAS  Google Scholar 

  • Romanenko VG, Catalan MA, Brown DA, Putzier I, Hartzell HC, Marmorstein AD, Gonzalez-Begne M, Rock JR, Harfe BD, Melvin JE (2010) Tmem16A encodes the Ca2+-activated Cl- channel in mouse submandibular salivary gland acinar cells. J Biol Chem 285:12990–13001

    Article  PubMed  CAS  Google Scholar 

  • Roppolo D, Ribaud V, Jungo VP, Luscher C, Rodriguez I (2006) Projection of the Gruneberg ganglion to the mouse olfactory bulb. Eur J Neurosci 23:2887–2894

    Article  PubMed  Google Scholar 

  • Sagheddu C, Boccaccio A, Dibattista M, Montani G, Tirindelli R, Menini A (2010) Calcium concentration jumps reveal dynamic ion selectivity of calcium-activated chloride currents in mouse olfactory sensory neurons and TMEM16b-transfected HEK 293 T cells. J Physiol (Lond) 588:4189–4204

    Article  CAS  Google Scholar 

  • Sato K, Suzuki N (2000) The contribution of a Ca2+-activated Cl conductance to amino-acid-induced inward current responses of ciliated olfactory neurons of the rainbow trout. J Exp Biol 203:253–262

    PubMed  CAS  Google Scholar 

  • Schaefer ML, Bottger B, Silver WL, Finger TE (2002) Trigeminal collaterals in the nasal epithelium and olfactory bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol 444:221–226

    Article  PubMed  Google Scholar 

  • Schmid A, Pyrski M, Biel M, Leinders-Zufall T, Zufall F (2010) Grueneberg ganglion neurons are finely tuned cold sensors. J Neurosci 30:7563–7568

    Article  PubMed  CAS  Google Scholar 

  • Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Silver WL, Clapp TR, Stone LM, Kinnamon SC (2006) TRPV1 receptors and nasal trigeminal chemesthesis. Chem Senses 31:807–812

    Article  PubMed  CAS  Google Scholar 

  • Smith DW, Thach S, Marshall EL, Mendoza MG, Kleene SJ (2008) Mice lacking NKCC1 have normal olfactory sensitivity. Physiol Behav 93:44–49

    Article  PubMed  CAS  Google Scholar 

  • Solbu TT, Holen T (2011) Aquaporin pathways and mucin secretion of Bowman’s glands might protect the olfactory mucosa. Chem Senses 37:35–46

    Article  PubMed  Google Scholar 

  • Spehr M, Spehr J, Ukhanov K, Kelliher KR, Leinders-Zufall T, Zufall F (2006) Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 63:1476–1484

    Article  PubMed  CAS  Google Scholar 

  • Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci USA 106:11776–11781

    Article  PubMed  CAS  Google Scholar 

  • Stohr H, Heisig JB, Benz PM, Schoberl S, Milenkovic VM, Strauss O, Aartsen WM, Wijnholds J, Weber BH, Schulz HL (2009) TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J Neurosci 29:6809–6818

    Article  PubMed  Google Scholar 

  • Tian Y, Kongsuphol P, Hug M, Ousingsawat J, Witzgall R, Schreiber R, Kunzelmann K (2011) Calmodulin-dependent activation of the epithelial calcium-dependent chloride channel TMEM16A. FASEB J 25:1058–1068

    Article  PubMed  CAS  Google Scholar 

  • Wang YY, Chang RB, Liman ER (2010) TRPA1 is a component of the nociceptive response to CO2. J Neurosci 30:12958–12963

    Article  PubMed  CAS  Google Scholar 

  • Weiler E, Farbman AI (2003) The septal organ of the rat during postnatal development. Chem Senses 28:581–593

    Article  PubMed  Google Scholar 

  • Xiao Q, Yu K, Perez-Cornejo P, Cui Y, Arreola J, Hartzell HC (2011) Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc Natl Acad Sci USA 108:8891–8896

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Delay RJ (2010) Calcium-activated chloride current amplifies the response to urine in mouse vomeronasal sensory neurons. J Gen Physiol 135:3–13

    Article  PubMed  CAS  Google Scholar 

  • Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Reed RR (2001) X inactivation of the OCNC1 channel gene reveals a role for activity-dependent competition in the olfactory system. Cell 104:651–660

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Kerstin Vocke and Philipp Daiber for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Möhrlen.

Additional information

This project was supported by the Deutsche Forschungsgemeinschaft (DFG) to F.M. and S.F. (MO1384/2-3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dauner, K., Lißmann, J., Jeridi, S. et al. Expression patterns of anoctamin 1 and anoctamin 2 chloride channels in the mammalian nose. Cell Tissue Res 347, 327–341 (2012). https://doi.org/10.1007/s00441-012-1324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1324-9

Keywords

Navigation