Structural messenger RNA contains cytokeratin polymerization and depolymerization signals

Abstract

We have previously shown that VegT mRNA plays a structural (translation-independent) role in the organization of the cytokeratin cytoskeleton in Xenopus oocytes. The depletion of VegT mRNA causes the fragmentation of the cytokeratin network in the vegetal cortex of Xenopus oocytes. This effect can be rescued by the injection of synthetic VegT RNA into the oocyte. Here, we show that the structural function of VegT mRNA in Xenopus oocyte depends on its combinatory signals for the induction or facilitation and for the maintenance of the depolymerization vs. polymerization status of cytokeratin filaments and that the 300-nucleotide fragment of VegT RNA isolated from the context of the entire molecule induces and maintains the depolymerization of cytokeratin filaments when injected into Xenopus oocytes. A computational analysis of three homologous Xenopus VegT mRNAs has revealed the presence, within this 300-nucleotide region, of a conserved base-pairing (hairpin) configuration that might function in RNA/protein interactions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Alarcon VB, Elinson RP (2001) RNA anchoring in the vegetal cortex of the Xenopus oocyte. J Cell Sci 114:1731–1741

    PubMed  CAS  Google Scholar 

  2. Altuvia S, Wagner EG (2000) Switching on and off with RNA. Proc Natl Acad Sci USA 97:9824–9826

    PubMed  Article  CAS  Google Scholar 

  3. Bevilacqua PC, Russell R (2008) Editorial overview: exploring the vast dynamic range of RNA dynamics. Curr Opin Chem Biol 12:601–603

    PubMed  Article  CAS  Google Scholar 

  4. Bilinski SM, Jaglarz MK, Dougherty MT, Kloc M (2010) Electron microscopy, immunostaining, cytoskeleton visualization, in situ hybridization, and three-dimensional reconstruction of Xenopus oocytes. Methods 51:11–19

    PubMed  Article  CAS  Google Scholar 

  5. Blower MD, Nachury M, Heald R, Weis K (2005) A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell 121:223–234

    PubMed  Article  CAS  Google Scholar 

  6. Blower MD, Feric E, Weis K, Heald R (2007) Genome-wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules. J Cell Biol 179:1365–1373

    PubMed  Article  CAS  Google Scholar 

  7. Bratu DP, Cha BJ, Mhlanga MM, Kramer FR, Tyagi S (2003) Visualizing the distribution and transport of mRNAs in living cells. Proc Natl Acad Sci USA 100:13308–13313

    PubMed  Article  CAS  Google Scholar 

  8. Clarke EJ, Allan VJ (2003) Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs. Cell Motil Cytoskel 56:13–26

    Article  Google Scholar 

  9. D’Inca R, Marteil G, Bazile F, Pascal A, Guitton N, Lavigne R, Richard-Parpaillon L, Kubiak JZ (2010) Proteomic screen for potential regulators of M-phase entry and quality of meiotic resumption in Xenopus laevis oocytes. J Proteomics 73:1542–1550

    PubMed  Article  Google Scholar 

  10. Dobrzynski M, Bernatowicz P, Kloc M, Kubiak JZ (2011) Evolution of bet-hedging mechanisms in cell cycle and embryo development stimulated by weak linkage of stochastic processes. Results Probl Cell Differ 53:11–30

    PubMed  Article  CAS  Google Scholar 

  11. Elinson RP, King ML, Forristall C (1993) Isolated vegetal cortex from Xenopus oocytes selectively retains localized RNAs. Dev Biol 160:554–562

    PubMed  Article  CAS  Google Scholar 

  12. Heasman J, Wessely O, Langland R, Craig EJ, Kessler DS (2001) Vegetal localization of maternal mRNAs is disrupted by VegT depletion. Dev Biol 240:377–386

    PubMed  Article  CAS  Google Scholar 

  13. Helmann JD (2007) Measuring metals with RNA. Mol Cell 27:859–860

    PubMed  Article  CAS  Google Scholar 

  14. Jenny A, Hachet O, Zavorszky P, Cyrklaff A, Weston MD, Johnston DS, Erdelyi M, Ephrussi A (2006) A translation-independent role of oskar RNA in early Drosophila oogenesis. Development 133:2827–2833

    PubMed  Article  CAS  Google Scholar 

  15. Kloc M (2008) Emerging novel functions of RNAs, and binary phenotype? Dev Biol 317:401–404

    PubMed  Article  CAS  Google Scholar 

  16. Kloc M (2009) Teachings from the egg: new and unexpected functions of RNAs. Mol Reprod Dev 76:922–932

    PubMed  Article  CAS  Google Scholar 

  17. Kloc M, Etkin LD (1994) Delocalization of Vg1 mRNA from the vegetal cortex in Xenopus after destruction of Xlsirt RNA. Science 265:1101–1103

    PubMed  Article  CAS  Google Scholar 

  18. Kloc M, Spohr G, Etkin LD (1993) Translocation of repetitive RNA sequences with the germ plasm in Xenopus oocytes. Science 262:1712–1714

    PubMed  Article  CAS  Google Scholar 

  19. Kloc M, Dougherty MT, Bilinski S, Chan AP, Brey E, King ML, Patrick CW, Etkin LD (2002) Three-dimensional ultrastructural analysis of RNA distribution within germinal granules of Xenopus. Dev Biol 241:79–93

    PubMed  Article  CAS  Google Scholar 

  20. Kloc M, Wilk K, Vargas D, Shirato Y, Bilinski S, Etkin LD (2005) Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes. Development 132:3445–3457

    PubMed  Article  CAS  Google Scholar 

  21. Kloc M, Bilinski S, Dougherty MT (2007) Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: three-dimensional and ultrastructural analysis. Exp Cell Res 313:1639–1651

    PubMed  Article  CAS  Google Scholar 

  22. Kloc M, Foreman V, Reddy SA (2011) Binary function of mRNA. Biochemie (in press)

  23. Klymkowsky MW, Maynell LA (1989) MPF-induced breakdown of cytokeratin filament organization in the maturing Xenopus oocyte depends upon the translation of maternal mRNAs. Dev Biol 134:479–485

    PubMed  Article  CAS  Google Scholar 

  24. Klymkowsky MW, Maynell LA, Nislow C (1991) Cytokeratin phosphorylation, cytokeratin filament severing and the solubilization of the maternal mRNA Vg1. J Cell Biol 114:787–797

    PubMed  Article  CAS  Google Scholar 

  25. Lecuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–187

    PubMed  Article  CAS  Google Scholar 

  26. Marteil G, D’Inca R, Pascal A, Guitton N, Midtun T, Goksoyr A, Richard-Parpaillon L, Kubiak JZ (2010) EP45 accumulates in growing Xenopus laevis oocytes and has oocyte maturation enhancing activity involved in oocyte quality. J Cell Sci 123:1805–1813

    PubMed  Article  CAS  Google Scholar 

  27. Parisien M, Major F (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452:51–55

    PubMed  Article  CAS  Google Scholar 

  28. Pearson WR (2000) Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol 132:185–219

    PubMed  CAS  Google Scholar 

  29. Ray PS, Jia J, Yao P, Majumder M, Hatzoglou M, Fox PL (2009) A stress-responsive RNA switch regulates VEGFA expression. Nature 457:915–919

    PubMed  Article  CAS  Google Scholar 

  30. Romby P, Wagner EG (2008) Exploring the complex world of RNA regulation. Biol Cell 100:e1–e3

    PubMed  Article  Google Scholar 

  31. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    PubMed  Article  CAS  Google Scholar 

  32. Zhang J, King ML (1996) Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning. Development 122:4119–4129

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Kenneth Dunner Jr for his electron microscopy work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Kloc.

Additional information

M. Kloc was supported by NSF grant 0904186. The High Resolution Electron Microscopy Facility at UTMDACC was supported by an Institutional Core Grant (no. CA16672).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kloc, M., Dallaire, P., Reunov, A. et al. Structural messenger RNA contains cytokeratin polymerization and depolymerization signals. Cell Tissue Res 346, 209–222 (2011). https://doi.org/10.1007/s00441-011-1255-x

Download citation

Keywords

  • Structural RNA
  • Cytokeratin
  • Oocyte
  • VegT mRNA
  • Xenopus