Skip to main content
Log in

Comparative effect of FGF2, synthetic peptides 1-28 N-POMC and ACTH on proliferation in rat adrenal cell primary cultures

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

There is evidence that pro-opiomelanocortin (POMC)-derived peptides other than adrenocorticotropic hormone (ACTH) have a role in adrenal cell proliferation. We compared the activity of synthetic rat N-terminal POMC fragment 1-28 with disulfide bridges (N-POMCw) and without disulfide bridges (N-POMCw/o), with the activity of fibroblast growth factor (FGF2), a widely studied adrenal growth factor, and ACTH, in well-characterized pure cultures of both isolated adrenal Glomerulosa (G) and Fasciculata/Reticularis (F/R) cells. Three days of FGF2-treatment had a proliferative effect similar to serum, and synthetic peptide N-POMCw induced proliferation more efficiently than N-POMCw/o. Moreover, both induced proliferation via the ERK1/2 pathway. In contrast, sustained ACTH treatment decreased proliferation and viability through apoptosis induction, but not necrosis, and independently of PKA and PKC pathways. Further elucidation of 1-28 POMC signal transduction is of interest, and primary cultures of adrenal cells were found to be useful for examining the trophic activity of this peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Armelin HA, Lotfi CF (1999) Control of the adrenocortical cell cycle: interaction between FGF2 and ACTH. Braz J Med Biol Res 32:841–843

    Article  PubMed  CAS  Google Scholar 

  • Basile DP, Holzwarth MA (1994) Basic fibroblast growth factor receptor in the rat adrenal cortex: effects of suramin and unilateral adrenalectomy on receptor numbers. Endocrinology 134:2482–2489

    Article  PubMed  CAS  Google Scholar 

  • Bicknell AB (2003) Identification of a serine protease involved with the regulation of adrenal growth. Ann N Y Acad Sci 994:118–122

    Article  PubMed  CAS  Google Scholar 

  • Boulle N, Gicquel C, Logie A, Christol R, Feige JJ, Le Bouc Y (2000) Fibroblast growth factor-2 inhibits the maturation of pro-insulin-like growth factor-II (Pro-IGF-II) and the expression of insulin-like growth factor binding protein-2 (IGFBP-2) in the human adrenocortical tumor cell line NCI-H295R. Endocrinology 141:3127–3136

    Article  PubMed  CAS  Google Scholar 

  • Carsia RV, Macdonald GJ, Gibney JA, Tilly KI, Tilly JL (1996) Apoptotic cell death in the rat adrenal gland: an in vivo and in vitro investigation. Cell Tissue Res 283:247–254

    Article  PubMed  CAS  Google Scholar 

  • Carsia RV, Tilly KI, Tilly JL (1997) Hormonal modulation of apoptosis in the rat adrenal gland in vitro is dependent on structural integrity. Endocrine 7:377–381

    Article  PubMed  CAS  Google Scholar 

  • Chu Y, Ho WJ, Dunn JC (2009) Basic fibroblast growth factor delivery enhances adrenal cortical cellular regeneration. Tissue Eng Part A 15:2093–2101

    Article  PubMed  CAS  Google Scholar 

  • Estivariz FE, Iturriza F, McLean C, Hope J, Lowry PJ (1982) Stimulation of adrenal mitogenesis by N-terminal proopiocortin peptides. Nature 297:419–422

    Article  PubMed  CAS  Google Scholar 

  • Fassnacht M, Hahner S, Hansen IA, Kreutzberger T, Zink M, Adermann K et al (2003) N-terminal proopiomelanocortin acts as a mitogen in adrenocortical tumor cells and decreases adrenal steroidogenesis. J Clin Endocrinol Metab 88:2171–2179

    Article  PubMed  CAS  Google Scholar 

  • Gallo-Payet N, Payet MD (1989) Excitation-secretion coupling: involvement of potassium channels in ACTH-stimulated rat adrenocortical cells. J Endocrinol 120:409–421

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Handley HH (1975) Stimulation of division of Y1 adrenal cells by a growth factor isolated from bovine pituitary glands. Endocrinology 97:102–107

    Article  PubMed  CAS  Google Scholar 

  • Hornsby PJ, Gill GN (1977) Hormonal control of adrenocortical cell proliferation. Desensitization to ACTH and interaction between ACTH and fibroblast growth factor in bovine adrenocortical cell cultures. J Clin Invest 60:342–352

    Article  PubMed  CAS  Google Scholar 

  • Hornsby PJ, O’Hare MJ, Neville AM (1973) Effect of ACTH on biosynthesis of aldosterone and corticosterone by monolayer cultures of rat adrenal zona glomerulosa cells. Biochem Biophys Res Commun 54:1554–1559

    Article  PubMed  CAS  Google Scholar 

  • Hornsby PJ, O’Hare MJ, Neville AM (1974) Functional and morphological observations on rat adrenal zona glomerulosa cells in monolayer culture. Endocrinology 95:1240–1251

    Article  PubMed  CAS  Google Scholar 

  • Lotfi CF, Todorovic Z, Armelin HA, Schimmer BP (1997) Unmasking a growth-promoting effect of the adrenocorticotropic hormone in Y1 mouse adrenocortical tumor cells. J Biol Chem 272:29886–29891

    Article  PubMed  CAS  Google Scholar 

  • Lowry PJ, Silas L, McLean C, Linton EA, Estivariz FE (1983) Pro-gamma-melanocyte-stimulating hormone cleavage in adrenal gland undergoing compensatory growth. Nature 306:70–73

    Article  PubMed  CAS  Google Scholar 

  • Masui H, Garren LD (1971) On the mechanism of action of adrenocorticotropic hormone. The stimulation of thymidine kinase activity with altered properties and changed subcellular distribution. J Biol Chem 246:5407–5413

    PubMed  CAS  Google Scholar 

  • Mattos GE, Lotfi CF (2005) Differences between the growth regulatory pathways in primary rat adrenal cells and mouse tumor cell line. Mol Cell Endocrinol 245:31–42

    Article  PubMed  CAS  Google Scholar 

  • Mendonca PO, Lotfi CF (2011) The proliferative effect of synthetic N-POMC (1-28) peptides in rat adrenal cortex: a possible role for cyclin E. Mol Cell Endocrinol 336:156–161

    Article  PubMed  Google Scholar 

  • Mesiano S, Mellon SH, Gospodarowicz D, Di Blasio AM, Jaffe RB (1991) Basic fibroblast growth factor expression is regulated by corticotropin in the human fetal adrenal: a model for adrenal growth regulation. Proc Natl Acad Sci USA 88:5428–5432

    Article  PubMed  CAS  Google Scholar 

  • Otis M, Campbell S, Payet MD, Gallo-Payet N (2005) Angiotensin II stimulates protein synthesis and inhibits proliferation in primary cultures of rat adrenal glomerulosa cells. Endocrinology 146:633–642

    Article  PubMed  CAS  Google Scholar 

  • Otis M, Campbell S, Payet MD, Gallo-Payet N (2007) Expression of extracellular matrix proteins and integrins in rat adrenal gland: importance for ACTH-associated functions. J Endocrinol 193:331–347

    Article  PubMed  CAS  Google Scholar 

  • Pepper DJ, Bicknell AB (2009) The stimulation of mitogenic signaling pathways by N-POMC peptides. Mol Cell Endocrinol 300:77–82

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran J, Suyama AT (1975) Inhibition of replication of normal adrenocortical cells in culture by adrenocorticotropin. Proc Natl Acad Sci USA 72:113–117

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W (1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97:493–497

    Article  PubMed  CAS  Google Scholar 

  • Schweigerer L, Neufeld G, Friedman J, Abraham JA, Fiddes JC, Gospodarowicz D (1987) Basic fibroblast growth factor: production and growth stimulation in cultured adrenal cortex cells. Endocrinology 120:796–800

    Article  PubMed  CAS  Google Scholar 

  • Shepherd SP, Holzwarth MA (2001) Chromaffin-adrenocortical cell interactions: effects of chromaffin cell activation in adrenal cell cocultures. Am J Physiol Cell Physiol 280:C61–C71

    PubMed  CAS  Google Scholar 

  • Simonian MH, Gill GN (1981) Regulation of the fetal human adrenal cortex: effects of adrenocorticotropin on growth and function of monolayer cultures of fetal and definitive zone cells. Endocrinology 108:1769–1779

    Article  PubMed  CAS  Google Scholar 

  • Torres TE, de Mendonca PO, Lotfi CF (2010) Synthetic modified N-POMC(1-28) controls in vivo proliferation and blocks apoptosis in rat adrenal cortex. Cell Tissue Res 341:239–250

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Maria Aparecida Juliano from the Department of Biochemistry and Biophysics of the Federal University of São Paulo (UNIFESP) for the synthesis of modified N-POMCw/o peptide.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudimara Ferini Pacicco Lotfi.

Additional information

G.E.M. is a recipient of scholarships from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Foundation for the Support of Research in the State of São Paulo); C.F.P.L. received funding from FAPESP, from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, The National Council for Scientific and Technological Development) and from the Pró-Reitoria de Pesquisa da Universidade de São Paulo (University of São Paulo Dean’s Office for Research Projects).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattos, G.E., Jacysyn, J.F., Amarante-Mendes, G.P. et al. Comparative effect of FGF2, synthetic peptides 1-28 N-POMC and ACTH on proliferation in rat adrenal cell primary cultures. Cell Tissue Res 345, 343–356 (2011). https://doi.org/10.1007/s00441-011-1220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1220-8

Keywords

Navigation