Skip to main content
Log in

Catecholamine biosynthesis and secretion: physiological and pharmacological effects of secretin

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Pituitary adenylyl cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) augment the biosynthesis of tyrosine hydroxylase (TH). We tested whether secretin belonging to the glucagon/PACAP/VIP superfamily would increase transcription of the tyrosine hydroxylase (Th) gene and modulate catecholamine secretion. Secretin activated transcription of the endogenous Th gene and its transfected promoter (EC50 ∼4.6 nM) in pheochromocytoma (PC12) cells. This was abolished by pre-treatment with a secretin receptor (SCTR) antagonist and by inhibition of protein kinase A (PKA), mitogen-activated protein kinase, or CREB (cAMP response element-binding protein). In agreement, secretin increased PKA activity and induced phosphorylation of CREB and binding to Th CRE, suggesting secretin signaling to transcription via a PKA-CREB pathway. Secretin stimulated catecholamine secretion (EC50 ∼3.5 μM) from PC12 cells, but this was inhibited by pre-treatment with VIP-preferring receptor (VPAC1)/PACAP-preferring receptor (PAC1) antagonists. Secretin-evoked secretion occurred without extracellular Ca2+ and was abolished by intracellular Ca2+ chelation. Secretin augmented phospholipase C (PLC) activity and increased inositol-1,4,5-triphosphate (IP3) levels in PC12 cells; PLC-β inhibition blocked secretin-induced catecholamine secretion, indicating the participation of intracellular Ca2+ from a phospholipase pathway in secretion. Like PACAP, secretin evoked long-lasting catecholamine secretion, even after only a transient exposure. Thus, transcription is triggered by nanomolar concentrations of the peptide through SCTR, with signaling along the cAMP-PKA and extracellular-signal-regulated kinase 1/2 pathways and through CREB. By contrast, secretion is triggered only by micromolar concentrations of peptide through PAC1/VPAC receptors and by utilizing a PLC/intracellular Ca2+ pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Chga :

Chromogranin A gene

CRE:

cAMP response element

ERK:

Extracellular-signal-regulated kinase

GPCR:

G-protein-coupled receptor

IP3 :

Inositol-1,4,5-triphosphate

PAC1:

PACAP-preferring receptor

PACAP:

Pituitary adenylyl cyclase activating polypeptide

PHI:

Peptide histidine isoleucine

PKA:

Protein kinase A

PLC:

Phospholipase C

RT-PCR:

Reverse transcription followed by polymerase Chain reaction

SCTR:

Secretin receptor

Sctr :

Secretin receptor gene

TH:

Tyrosine hydroxylase enzyme

Th :

TH gene

VIP:

Vasoactive intestinal polypeptide

VPAC1:

VIP-preferring receptor

References

  • Anderova M, Duchene AD, Barbara JG, Takeda K (1998) Vasoactive intestinal peptide potentiates and directly stimulates catecholamine secretion from rat adrenal chromaffin cells. Brain Res 809:97–106

    Article  PubMed  CAS  Google Scholar 

  • Aragon V, Rossier O, Cianciotto NP (2002) Legionella pneumophila genes that encode lipase and phospholipase C activities. Microbiology 148:2223–2231

    PubMed  CAS  Google Scholar 

  • Babu GN, Vijayan E (1983) Plasma gonadotropin, prolactin levels and hypothalamic tyrosine hydroxylase activity following intraventricular bombesin and secretin in ovariectomized conscious rats. Brain Res Bull 11:25–29

    Article  PubMed  CAS  Google Scholar 

  • Bayliss HP, Starling EH (1902) Mechanism of pancreatic secretion. J Physiol (Lond) 28:325–353

    CAS  Google Scholar 

  • Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  PubMed  CAS  Google Scholar 

  • Chatelain P, Gillet L, Waelbroeck M, Camus JC, Robberecht P, Christophe J (1983) Selective alteration of secretin-stimulated cardiac adenylate cyclase activity in streptozotocin-diabetic rats. Horm Metab Res 15:620–622

    Article  PubMed  CAS  Google Scholar 

  • Chey WY, Chang TM (2003) Secretin, 100 years later. J Gastroenterol 38:1025–1035

    Article  PubMed  CAS  Google Scholar 

  • Choi HJ, Park SY, Hwang O (1999) Differential involvement of PKA and PKC in regulation of catecholamine enzyme genes by PACAP. Peptides 20:817–822

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury PS, Guo X, Wakade TD, Przywara DA, Wakade AR (1994) Exocytosis from a single rat chromaffin cell by cholinergic and peptidergic neurotransmitters. Neuroscience 59:1–5

    Article  PubMed  CAS  Google Scholar 

  • Chu JY, Yung WH, Chow BK (2006) Secretin: a pleiotrophic hormone. Ann NY Acad Sci 1070:27–50

    Article  PubMed  CAS  Google Scholar 

  • Corbitt J, Vivekananda J, Wang SS, Strong R (1998) Transcriptional and posttranscriptional control of tyrosine hydroxylase gene expression during persistent stimulation of pituitary adenylate cyclase-activating polypeptide receptors on PC12 cells: regulation by protein kinase A-dependent and protein kinase A-independent pathways. J Neurochem 71:478–486

    Article  PubMed  CAS  Google Scholar 

  • Corbitt J, Hagerty T, Fernandez E, Morgan WW, Strong R (2002) Transcriptional and post-transcriptional regulation of tyrosine hydroxylase messenger RNA in PC12 cells during persistent stimulation by VIP and PACAP38: differential regulation by protein kinase A and protein kinase C-dependent pathways. Neuropeptides 36:34–45

    Article  PubMed  CAS  Google Scholar 

  • Cui J, Zhou X, Chazaro I, DeStefano AL, Manolis AJ, Baldwin CT, Gavras H (2003) Association of polymorphisms in the promoter region of the PNMT gene with essential hypertension in African Americans but not in Whites. Am J Hypertens 16:859–863

    Article  PubMed  CAS  Google Scholar 

  • Deak M, Clifton AD, Lucocq LM, Alessi DR (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17:4426–4441

    Article  PubMed  CAS  Google Scholar 

  • Deisseroth K, Bito H, Tsien RW (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16:89–101

    Article  PubMed  CAS  Google Scholar 

  • Douglas WW (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 34:453–474

    Google Scholar 

  • Garcia AG, Garcia-De-Diego AM, Gandia L, Borges R, Garcia-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131

    Article  PubMed  CAS  Google Scholar 

  • Gayen JR, Saberi M, Schenk S, Biswas N, Vaingankar SM, Cheung WW, Najjar SM, O'Connor DT, Bandyopadhyay G, Mahata SK (2009) A novel pathway of insulin sensitivity in chromogranin a null mice: a crucial role for pancreastatin in glucose homeostasis. J Biol Chem 284:28498–28509

    Article  PubMed  CAS  Google Scholar 

  • Grabner CP, Fox AP (2006) Stimulus-dependent alterations in quantal neurotransmitter release. J Neurophysiol 96:3082–3087

    Article  PubMed  Google Scholar 

  • Gunnes P, Rasmussen K (1986) Haemodynamic effects of pharmacological doses of secretin in patients with impaired left ventricular function. Eur Heart J 7:146–149

    PubMed  CAS  Google Scholar 

  • Gunnes P, Smiseth OA, Lygren I, Jorde R (1985) Effects of secretin infusion on myocardial performance and metabolism in the dog. J Cardiovasc Pharmacol 7:1183–1187

    Article  PubMed  CAS  Google Scholar 

  • Gunnes P, Reikeras O, Lygren I (1986) Secretin infusion in acute ischemic left ventricular failure: effects on myocardial performance and metabolism in a closed-chest dog model. J Pharmacol Exp Ther 239:915–918

    PubMed  CAS  Google Scholar 

  • Guo X, Wakade AR (1994) Differential secretion of catecholamines in response to peptidergic and cholinergic transmitters in rat adrenals. J Physiol (Lond) 475:539–545

    CAS  Google Scholar 

  • Hagiwara M, Brindle P, Harootunian A, Armstrong R, Rivier J, Vale W, Tsien R, Montminy MR (1993) Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. Mol Cell Biol 13:4852–4859

    PubMed  CAS  Google Scholar 

  • Hamelink C, Tjurmina O, Damadzic R, Young WS, Weihe E, Lee HW, Eiden LE (2002) Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proc Natl Acad Sci USA 99:461–466

    Article  PubMed  CAS  Google Scholar 

  • Ip NY, Zigmond RE (2000) Synergistic effects of muscarinic agonists and secretin or vasoactive intestinal peptide on the regulation of tyrosine hydroxylase activity in sympathetic neurons. J Neurobiol 42:14–21

    Article  PubMed  CAS  Google Scholar 

  • Isobe K, Yukimasa N, Nakai T, Takuwa Y (1996) Pituitary adenylate cyclase-activating polypeptide induces gene expression of the catecholamine synthesizing enzymes, tyrosine hydroxylase and dopamine beta hydroxylase, through 3',5'-cyclic adenosine monophosphate- and protein kinase C-dependent mechanisms in cultured porcine adrenal medullary chromaffin cells. Neuropeptides 30:167–175

    Article  PubMed  CAS  Google Scholar 

  • Koshimizu H, Cawley NX, Kim T, Yergey AL, Loh YP (2011) Serpinin: a novel chromogranin A-derived, secreted peptide up-regulates protease nexin-1 expression and granule biogenesis in endocrine cells. Mol Endocrinol (in press)

  • Kurioka S, Matsuda M (1976) Phospholipase C assay using p-nitrophenylphosphoryl-choline together with sorbitol and its application to studying the metal and detergent requirement of the enzyme. Anal Biochem 75:281–289

    Article  PubMed  CAS  Google Scholar 

  • Lazaroff M, Patankar S, Yoon SO, Chikaraishi DM (1995) The cyclic AMP response element directs tyrosine hydroxylase expression in catecholaminergic central and peripheral nervous system cell lines from transgenic mice. J Biol Chem 270:21579–21589

    Article  PubMed  CAS  Google Scholar 

  • Lewis-Tuffin LJ, Quinn PG, Chikaraishi DM (2004) Tyrosine hydroxylase transcription depends primarily on cAMP response element activity, regardless of the type of inducing stimulus. Mol Cell Neurosci 25:536–547

    Article  PubMed  CAS  Google Scholar 

  • Mahapatra NR, Mahata M, Datta A, Gerdes H-H, Huttner WB, O’Connor DT, Mahata SK (2000) Neuroendocrine cell type-specific and inducible expression of the chromogranin B gene: crucial role of the proximal promoter. Endocrinology 141:3668–3678

    Article  PubMed  CAS  Google Scholar 

  • Mahapatra NR, Mahata M, O'Connor DT, Mahata SK (2003) Secretin activation of chromogranin A gene transcription. Identification of the signaling pathways in cis and in trans. J Biol Chem 278:19986–19994

    Article  PubMed  CAS  Google Scholar 

  • Mahata M, Mahata SK, Parmer RJ, O'Connor DT (1996) Vesicular monoamine transport inhibitors novel action at calcium channels to prevent catecholamine secretion. Hypertension 28:414–420

    PubMed  CAS  Google Scholar 

  • Mahata SK, Mahata M, Livsey CV, Gerdes H-H, Huttner WB, O'Connor DT (1999) Neuroendocrine cell type-specific and inducible expression of the secretogranin II gene: crucial role of cyclic adenosine monophosphate and serum response elements. Endocrinology 140:739–749

    Article  PubMed  CAS  Google Scholar 

  • Malhotra RK, Wakade TD, Wakade AR (1988) Vasoactive intestinal polypeptide and muscarine mobilize intracellular Ca2+ through breakdown of phosphoinositides to induce catecholamine secretion. Role of IP3 in exocytosis. J Biol Chem 263:2123–2126

    PubMed  CAS  Google Scholar 

  • Muller A, Monnier D, Rene F, Larmet Y, Koch B, Loeffler JP (1997) Pituitary adenylate cyclase-activating polypeptide triggers dual transduction signaling in CATH.a cells and transcriptionally activates tyrosine hydroxylase and c-fos expression. J Neurochem 68:1696–1704

    Article  PubMed  CAS  Google Scholar 

  • Mutt V (1980) Chemistry, isolation and purification of gastrointestinal hormones. Biochem Soc Trans 8:11–14

    PubMed  CAS  Google Scholar 

  • O'Donohue TL, Charlton CG, Miller RL, Boden G, Jacobowitz DM (1981) Identification, characterization, and distribution of secretin immunoreactivity in rat and pig brain. Proc Natl Acad Sci USA 78:5221–5224

    Article  PubMed  Google Scholar 

  • Park SY, Choi HJ, Hwang O (1999) Regulation of basal expression of catecholamine-synthesizing enzyme genes by PACAP. Mol Cells 9:146–151

    PubMed  CAS  Google Scholar 

  • Przywara DA, Guo X, Angelilli ML, Wakade TD, Wakade AR (1996) A non-cholinergic transmitter, pituitary adenylate cyclase-activating polypeptide, utilizes a novel mechanism to evoke catecholamine secretion in rat adrenal chromaffin cells. J Biol Chem 271:10545–10550

    Article  PubMed  CAS  Google Scholar 

  • Rao F, Zhang L, Wessel J, Zhang K, Wen G, Kennedy BP, Rana BK, Das M, Rodriguez-Flores JL, Smith DW, Cadman PE, Salem RM, Mahata SK, Schork NJ, Taupenot L, Ziegler MG, O'Connor DT (2007) Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis: discovery of common human genetic variants governing transcription, autonomic activity, and blood pressure in vivo. Circulation 116:993–1006

    Article  PubMed  CAS  Google Scholar 

  • Roskoski R Jr, White L, Knowlton R, Roskoski LM (1989) Regulation of tyrosine hydroxylase activity in rat PC12 cells by neuropeptides of the secretin family. Mol Pharmacol 36:925–931

    PubMed  CAS  Google Scholar 

  • Schwarzschild MA, Zigmond RE (1989) Secretin and vasoactive intestinal peptide activate tyrosine hydroxylase in sympathetic nerve endings. J Neurosci 9:160–166

    PubMed  CAS  Google Scholar 

  • Schwarzschild MA, Zigmond RE (1991) Effects of peptides of the secretin-glucagon family and cyclic nucleotides on tyrosine hydroxylase activity in sympathetic nerve endings. J Neurochem 56:400–406

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861

    Article  PubMed  CAS  Google Scholar 

  • Sitniewska EM, Wisniewska RJ, Wisniewski K (2002) Diabetes-induced changes of nitric oxide influence on the cardiovascular action of secretin. Regul Pept 105:163–172

    Article  PubMed  CAS  Google Scholar 

  • Sun P, Enslen H, Myung PS, Maurer RA (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev 8:2527–2539

    Article  PubMed  CAS  Google Scholar 

  • Taupenot L, Mahata SK, Wu H, O'Connor DT (1998) Peptidergic activation of transcription and secretion in chromaffin cells. Cis and trans signaling determinants of pituitary adenylyl cyclase-activating polypeptide (PACAP). J Clin Invest 101:863–876

    Article  PubMed  CAS  Google Scholar 

  • Taupenot L, Mahata M, Mahata SK, O'Connor DT (1999) Time-dependent effects of the neuropeptide PACAP on catecholamine secretion: stimulation and desensitization. Hypertension 34:1152–1162

    PubMed  CAS  Google Scholar 

  • Tinti C, Yang C, Seo H, Conti B, Kim C, Joh TH, Kim KS (1997) Structure/function relationship of the cAMP response element in tyrosine hydroxylase gene transcription. J Biol Chem 272:19158–19164

    Article  PubMed  CAS  Google Scholar 

  • Tonshoff C, Hemmick L, Evinger MJ (1997) Pituitary adenylate cyclase activating polypeptide (PACAP) regulates expression of catecholamine biosynthetic enzyme genes in bovine adrenal chromaffin cells. J Mol Neurosci 9:127–140

    Article  PubMed  CAS  Google Scholar 

  • Trimble ER, Buchanan KD, Hadden DR, Montgomery DA (1977) Secretin: high plasma levels in diabetes mellitus. Acta Endocrinol (Copenh) 85:799–805

    CAS  Google Scholar 

  • Ulrich CD 2nd, Holtmann M, Miller LJ (1998) Secretin and vasoactive intestinal peptide receptors: members of a unique family of G protein-coupled receptors. Gastroenterology 114:382–397

    Article  PubMed  CAS  Google Scholar 

  • Wakade AR (1988) Noncholinergic transmitter(s) maintains secretion of catecholamines from rat adrenal medulla for several hours of continuous stimulation of splanchnic neurons. J Neurochem 50:1302–1308

    Article  PubMed  CAS  Google Scholar 

  • Wakade TD, Blank MA, Malhotra RK, Pourcho R, Wakade AR (1991) The peptide VIP is a neurotransmitter in rat adrenal medulla: physiological role in controlling catecholamine secretion. J Physiol (Lond) 444:349–362

    CAS  Google Scholar 

  • Wessels-Reiker M, Basiboina R, Howlett AC, Strong R (1993) Vasoactive intestinal polypeptide-related peptides modulate tyrosine hydroxylase gene expression in PC12 cells through multiple adenylate cyclase-coupled receptors. J Neurochem 60:1018–1029

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Mahata SK, Mahata M, Webster NJ, Parmer RJ, O'Connor DT (1995) A functional cyclic AMP response element plays a crucial role in neuroendocrine cell type-specific expression of the secretory granule protein chromogranin A. J Clin Invest 96:568–578

    Article  PubMed  CAS  Google Scholar 

  • Xing J, Ginty DD, Greenberg ME (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273:959–963

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Goulet M, Boismenu R, Ferguson AV (2004) Secretin depolarizes nucleus tractus solitarius neurons through activation of a nonselective cationic conductance. Am J Physiol Regul Integr Comp Physiol 286:R927–R934

    Article  PubMed  CAS  Google Scholar 

  • Yukimasa N, Isobe K, Nagai H, Takuwa Y, Nakai T (1999) Successive occupancy by immediate early transcriptional factors of the tyrosine hydroxylase gene TRE and CRE sites in PACAP-stimulated PC12 pheochromocytoma cells. Neuropeptides 33:475–482

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Mahata.

Additional information

This work was supported by grants from the Department of Veterans Affairs (to S.K.M. and D.T.O’C.) and the National Institutes of Health (R01 DA011311 to S.K.M.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahata, M., Zhang, K., Gayen, J.R. et al. Catecholamine biosynthesis and secretion: physiological and pharmacological effects of secretin. Cell Tissue Res 345, 87–102 (2011). https://doi.org/10.1007/s00441-011-1177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1177-7

Keywords

Navigation