Skip to main content

Advertisement

Log in

Cell proliferation and cytoarchitectural remodeling during spinal cord reconnection in the fresh-water turtle Trachemys dorbignyi

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In fresh-water turtles, the bridge connecting the proximal and caudal stumps of transected spinal cords consists of regenerating axons running through a glial cellular matrix. To understand the process leading to the generation of the scaffold bridging the lesion, we analyzed the mitotic activity triggered by spinal injury in animals maintained alive for 20–30 days after spinal cord transection. Flow cytometry and bromodeoxyuridine (BrdU)-labeling experiments revealed a significant increment of cycling cells around the lesion epicenter. BrdU-tagged cells maintained a close association with regenerating axons. Most dividing cells expressed the brain lipid-binding protein (BLBP). Cells with BrdU-positive nuclei expressed glial fibrillary acidic protein. As spinal cord regeneration involves dynamic cell rearrangements, we explored the ultra-structure of the bridge and found cells with the aspect of immature oligodendrocytes forming an embryonic-like microenvironment. These cells supported and ensheathed regenerating axons that were recognized by immunocytological and electron-microscopical procedures. Since functional recovery depends on proper impulse transmission, we examined the anatomical axon-glia relationships near the lesion epicenter. Computer-assisted three-dimensional models revealed helical axon-glial junctions in which the intercellular space appeared to be reduced (5–7 nm). Serial-sectioning analysis revealed that fibril-containing processes provided myelinating axon sheaths. Thus, disruption of the ependymal layer elicits mitotic activity predominantly in radial glia expressing BLBP on the lateral aspects of the ependyma. These cycling cells seem to migrate and contribute to the bridge providing the main support and sheaths for regenerating axons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    Article  PubMed  CAS  Google Scholar 

  • Adrian EK Jr, Walker BE (1962) Incorporation of thymidine H3 by cells in normal and injured mouse spinal cord. J Neuropathol Exp Neurol 21:597–609

    Article  PubMed  Google Scholar 

  • Armstrong J, Zhang L, McClelland AD (2003) Axonal regeneration of descending and ascending spinal projection neurons in spinal cord-transected larval lamprey. Exp Neurol 180:156–166

    Article  PubMed  Google Scholar 

  • Beattie MS, Bresnahan JC, Lopate G (1990) Metamorphosis alter the response to spinal transection in Xenopus laevis frogs. J Neurobiol 21:1108–1122

    Article  PubMed  CAS  Google Scholar 

  • Bittman K, Owens DF, Kriegstein AR, Lo Turco JJ (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortex. J Neurosci 17:7037–7044

    PubMed  CAS  Google Scholar 

  • Bruzzone R, Dermietzel R (2006) Structure and function of gap junctions in the developing brain. Cell Tissue Res 326:239–248

    Article  PubMed  CAS  Google Scholar 

  • Butler EG, Ward MB (1965) Reconstitution of the spinal cord following ablation in urodele larvae. J Exp Zool 160:47–65

    Article  PubMed  CAS  Google Scholar 

  • Chevallier S, Landry M, Nagy F, Cabelguen JM (2004) Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii. Eur J Neurosci 20:1995–2007

    Article  PubMed  Google Scholar 

  • Choi BH, Kim RC (1985) Expression of glial fibrillary acidic protein by immature oligodendroglia and its implications. J Neuroimmunol 8:215–235

    Article  PubMed  CAS  Google Scholar 

  • Choi BH, Kim RC, Lapham LW (1983) Do radial glia give rise to both astroglial and oligodendroglial cells? Dev Brain Res 8:119–130

    Article  Google Scholar 

  • Coggeshall RE, Youndblood CS (1983) Recovery from spinal transection in fish: regrowth of axons post the transection. Neurosci Lett 38:227–231

    Article  PubMed  CAS  Google Scholar 

  • Davis BM, Ayers JL, Koran L, Carlson J, Anderson MC, Simpson SB Jr (1990) Time course of salamander spinal cord regeneration and recovery of swimming: HRP retrograde pathway tracing and kinematic analysis. Exp Neurol 108:198–213

    Article  PubMed  CAS  Google Scholar 

  • Davies JA, Goucher DR, Doller C, Silver J (1999) Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 19:5810–5822

    PubMed  CAS  Google Scholar 

  • Dervan AG, Roberts BL (2003) Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration. J Comp Neurol 458:293–306

    Article  PubMed  Google Scholar 

  • Egar M, Simpson SB, Singer M (1970) The growth and differentiation of the regenerating spinal cord of the lizard Anolis carolinensis. J Morphol 131:131–152

    Article  PubMed  CAS  Google Scholar 

  • Elias LA, Wang DD, Kriegstein AR (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448:901–907

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12:895–908

    Article  PubMed  CAS  Google Scholar 

  • Fernández A, Radmilovich M, Trujillo-Cenóz O (2002) Neurogenesis and gliogenesis in the spinal cord of turtles. J Comp Neurol 458:293–306

    Google Scholar 

  • Ferretti P, Whalley K (2008) Successful neural regeneration in amniotes: the developing chick spinal cord. Cell Mol Life Sci 65:45–53

    Article  PubMed  CAS  Google Scholar 

  • Fogarty M, Richardson WD, Kessaris N (2005) A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132:1951–1959

    Article  PubMed  CAS  Google Scholar 

  • Fox MA, Afshari FS, Alexander JK, Colello RJ, Fuss B (2006) Growth conelike sensorimotor structures are characteristics features of postmigratory, premyelinating oligodendrocytes. Glia 53:563–566

    Article  PubMed  Google Scholar 

  • Gibbs KM, Szaro BG (2006) Regeneration of descending projections in Xenopus laevis tadpole demonstrated by retrograde double labeling. Brain Res 1088:68–72

    Article  PubMed  CAS  Google Scholar 

  • Godement P, Vanselow J, Thanos S, Bonhoeffer F (1987) A study in developing visual system with a new method of staining neurons and their processes in fixed tissue. Development 101:697–713

    PubMed  CAS  Google Scholar 

  • Gray EG, Guillery RW (1961) The basis for silver staining of synapses of the mammalian spinal cord: a light and electron microscope study. J Physiol (Lond) 157:581–588

    CAS  Google Scholar 

  • Guest JD, Ed H, Bunge RP (2005) Demyelination and Schwann cell response adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol 192:384–393

    Article  PubMed  CAS  Google Scholar 

  • Guillery RW, Herrup K (1997) Quantification without pontification. J Comp Neurol 386:2–7

    Article  PubMed  CAS  Google Scholar 

  • Hall SM, Williams PL (1971) The distribution of electron dense tracers in peripheral nerve fibers. J Cell Sci 8:541–555

    PubMed  CAS  Google Scholar 

  • Hasegawa K, Yu-Wen C, Li H, Berlin Y, Ikeda O, Kane-Goldsmith N, Grumet M (2004) Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Exp Neurol 193:394–410

    Article  Google Scholar 

  • Hasan SJ, Keirstead HS, Muir GD, Steeves JD (1993) Axonal regeneration contributes to repair of injured brainstem-spinal neurons in embryonic chick. J Neurosci 73:492–507

    Google Scholar 

  • Hirano M, Goldman JE (1988) Gliogenesis in the rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors. J Neurosci Res 21:155–167

    Article  PubMed  CAS  Google Scholar 

  • Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407:963–970

    Article  PubMed  CAS  Google Scholar 

  • Horner PJ, Power AE, Kempermann G, Kuhn HG, Palmer TD, Winkler J, Thal LJ, Gage FH (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20:2218–2228

    PubMed  CAS  Google Scholar 

  • Horky L, Galimi F, Gage F, Horner PJ (2006) Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol 498:525–538

    Article  PubMed  Google Scholar 

  • Houle JD, Jin Y (2001) Chronically injured supraspinal neurons only exhibit modest axonal dieback in response to a cervical hemisection lesion. Exp Neurol 169:208–217

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Zhou D, DiFiglia M (1992) Neurobiotin, a useful neuroanatomical tracer for in vivo anterograde, retrograde and transneuronal tract-tracing and for in vitro labelling of neurons. J Neurosci Methods 41:31–43

    Article  PubMed  CAS  Google Scholar 

  • Iseda T, Nishio T, Kawaguchi S, Yamanoto M, Kawasaki T, Wakisaka S (2004) Spontaneous regeneration of the corticospinal tract after transection in young rats: a key role of reactive astrocytes in making favorable and unfavorable conditions for regeneration. Neuroscience 126:365–374

    Article  PubMed  CAS  Google Scholar 

  • Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, Kelsh RN, Appel B (2006) In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat Neurosci 9:1506–1511

    Article  PubMed  CAS  Google Scholar 

  • Keirstead HS, Hasan SJ, Muir GD, Steeves JD (1992) Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord. Proc Natl Acad Sci USA 89:11664–11668

    Article  PubMed  CAS  Google Scholar 

  • Köbbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S (2000) Current concepts in neuroanatomical tracing. Prog Neurobiol 62:327–351

    Article  PubMed  Google Scholar 

  • Landis SC (1983) Neuronal growth cones. Annu Rev Physiol 45:567–580

    Article  PubMed  CAS  Google Scholar 

  • Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24:39–47

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Raisman G (1995) Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord. Exp Neurol 134:102–111

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Persson J, Svensson M, Aldskogius H (1998) Glial cell responses, complement and clustering in the central nervous system following dorsal root transection. Glia 23:221–238

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Rudin M, Kozlova E (2000) Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat. Exp Brain Res 131:64–73

    Article  PubMed  CAS  Google Scholar 

  • Lorente de Nó R (1921) La regeneración de la médula espinal en las larvas de batracios. Trab Lab Invest Biol Univ Madr 19:147–183

    Google Scholar 

  • Meletis K, Barnabé-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisén J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6:e182

    Article  PubMed  Google Scholar 

  • Mchedlishvili L, Epperlein H, Telzerow A, Tanaka EM (2007) A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors. Development 134:2083–2093

    Article  PubMed  CAS  Google Scholar 

  • Michel ME, Reier PJ (1979) Axonal-ependymal association during early regeneration in the transected spinal cord in Xenopus laevis tadpoles. J Neurocytol 8:529–548

    Article  PubMed  CAS  Google Scholar 

  • Mothe AJ, Tator CH (2005) Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience 131:177–187

    Article  PubMed  CAS  Google Scholar 

  • Nordlander R (1987) Axonal growth cones in the developing amphibian spinal cord. J Comp Neurol 263:485–496

    Article  PubMed  CAS  Google Scholar 

  • Novotny GEK (1979) Synaptic ring images after silver impregnation. Cell Tissue Res 204:141–145

    Article  PubMed  CAS  Google Scholar 

  • Piatt J (1955) Regeneration of the spinal cord in the salamander. J Exp Zool 129:177–207

    Article  Google Scholar 

  • Radmilovich M, Fernández A, Trujillo-Cenóz O (2003) Environment temperature affects cell proliferation in the spinal cord and brain of juvenile turtles. J Exp Biol 206:3085–3093

    Article  PubMed  Google Scholar 

  • Ramón y Cajal SR (1913–1914) Estudios sobre la degeneración y regeneración del sistema nervioso, TI-II. Degeneración y regeneración de los centros nerviosos. Moya, Madrid

    Google Scholar 

  • Rehermann MI, Marichal N, Russo RE, Trujillo-Cenóz O (2009) Neural reconnection in the transected spinal cord of the freshwater turtle Trachemys dorbignyi. J Comp Neurol 515:197–214

    Article  PubMed  Google Scholar 

  • Reichenbach A, Wolburg H (2005) Astrocytes and ependymal glia. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York, pp 19–35

    Google Scholar 

  • Reimer MM, Sörensen I, Kuscha V, Frank RE, Liu C, Becker C, Becker T (2008) Motor neuron regeneration in adult zebrafish. J Neurosci 28:8510–8516

    Article  PubMed  CAS  Google Scholar 

  • Rovainen CM (1976) Regeneration of Müller and Mauthner axons after spinal cord transection in larval lampreys. J Comp Neurol 168:545–554

    Article  PubMed  CAS  Google Scholar 

  • Russo RE, Reali C, Radmilovich M, Fernández A, Trujillo-Cenóz O (2008) Conexin 43 delimits functional domains of neurogenic precursors in the spinal cord. J Neurosci 28:3298–3309

    Article  PubMed  CAS  Google Scholar 

  • Salzer JL (2003) Polarized domains of myelinated axons. Neuron 40:297–318

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH, Reh TA, Harris WA (2006) Development of the nervous system, 2nd edn. Elsevier/Academic Press, San Diego

    Google Scholar 

  • Schnapp E, Kragl M, Rubin L, Tanaka E (2005) Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration. Development 132:3243–3253

    Article  PubMed  CAS  Google Scholar 

  • Sellers DL, Maris DO, Horner PJ (2009) Postinjury niches induce temporal shifts in progenitor fates to direct lesion repair after spinal cord injury. J Neurosci 29:6722–67333

    Article  PubMed  CAS  Google Scholar 

  • Shibuya S, Miyamoto O, Itano T, Mori S, Norimatsu H (2003) Temporal progressive antigen expression in radial glia after contusive spinal cord injury in adult rats. Glia 42:172–183

    Article  PubMed  Google Scholar 

  • Shifman MI, Jin LQ, Selzer M (2007) Regeneration in the lamprey spinal cord. In: Becker CG, Becker T (eds) Model organisms in spinal cord regeneration. Wiley-VCH, Weinheim, pp 229–262

    Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  PubMed  CAS  Google Scholar 

  • Simons M, Trotter J (2007) Wrapping it up: the cell biology of myelination. Curr Opin Neurobiol 17:533–540

    Article  PubMed  CAS  Google Scholar 

  • Singer M, Nordlander RTH, Egar M (1979) Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blue print hypothesis of neural pathway patterning. J Comp Neurol 185:1–22

    Article  PubMed  CAS  Google Scholar 

  • Sjöstrand F (1967) Electron microscopy of cells and tissues, vol 1. Academic Press, London New York

    Google Scholar 

  • Stensaas LJ (1983) Regeneration in the spinal cord of the newt Notopthalmus (Triturus) pyrrhogaster. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal cord reconstruction. Raven, New York, pp 121–149

    Google Scholar 

  • Takeda A, Goris RC, Funakoshi K (2007) Regeneration of descending projections to the spinal cord neurons after spinal hemisection in the goldfish. Brain Res 1155:17–23

    Article  PubMed  CAS  Google Scholar 

  • Tanaka EM, Ferretti P (2009) Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci 10:713–723

    Article  PubMed  CAS  Google Scholar 

  • Tennyson VM (1970) The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo. J Cell Biol 44:62–79

    Article  PubMed  CAS  Google Scholar 

  • Thuret S, Moon LD, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7:628–643

    Article  PubMed  CAS  Google Scholar 

  • Trujillo-Cenóz O, Fernández A, Radmilovich M, Reali C, Russo R (2007) Cytological organization of the central gelatinosa in the turtle spinal cord. J Comp Neurol 502:291–308

    Article  PubMed  Google Scholar 

  • Vessal M, Aycock A, Tess Garton M, Ciferri M, Darian-Smith C (2007) Adult neurogenesis in primate and rodent spinal cord: comparing a cervical dorsal rhizotomy with a dorsal column transection. Eur J Neurosci 26:2777–2794

    Article  PubMed  Google Scholar 

  • Williams RM, Bastiani J, Lia B, Chalupa LM (1988) Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat’s optic nerve. J Comp Neurol 246:32–69

    Article  Google Scholar 

  • Wood MR, Cohen MJ (1979) Synaptic regeneration in identified neurons of the lamprey spinal cord. Science 206:344–347

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Clarke JDW, Ferretti P (2000) FGF-2 up-regulation and proliferation of neural progenitors in the regenerating amphibian spinal cord in vivo. Dev Biol 225:381–391

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. A. Caputi for statistical advice and Mrs. G. Fabbiani for her kind and efficient technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Trujillo-Cenóz.

Additional information

This work was partly supported by FCE_2920 from ANII and grant no. R01NS048255 from the National Institute of Neurological Disorders and Stroke to R.E.R.

The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Neurological Disorders and Stroke or the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehermann, M.I., Santiñaque, F.F., López-Carro, B. et al. Cell proliferation and cytoarchitectural remodeling during spinal cord reconnection in the fresh-water turtle Trachemys dorbignyi . Cell Tissue Res 344, 415–433 (2011). https://doi.org/10.1007/s00441-011-1173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1173-y

Keywords

Navigation