Skip to main content
Log in

Spatiotemporal expression profile of no29/nucleophosmin3 in the intestine of Xenopus laevis during metamorphosis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

A Xenopus laevis homolog of nucleophosmin/nucleoplasmin3 (NPM3), no29, has been previously identified as a thyroid hormone (TH)-response gene during TH-induced metamorphosis. X. laevis has another NPM3 homolog (npm3) in the pseudo-tetraploid genome, whereas X. tropicalis possesses one ortholog in the diploid genome. To assess the possible roles of these NPM3 homologs in amphibian metamorphosis, we have analyzed their expression profiles in X. laevis tadpoles. Levels of no29 and npm3 mRNA are rapidly up-regulated by exogenous TH in various organs of the premetamorphic tadpoles. Notably, in the small intestine, no29 and npm3 mRNA levels are transiently up-regulated during metamorphic climax, when progenitor/stem cells of the adult epithelium appear and actively proliferate. In situ hybridization analysis has revealed that the no29 transcript is specifically localized in adult epithelial progenitor/stem cells of the intestine during natural and TH-induced metamorphosis. Double-staining for in situ hybridization and immunohistochemistry has shown co-expression of no29 mRNA and no38 protein (an ortholog of NPM1), which is known to interact with NPM3 and to regulate cell proliferation in mammals. Thus, no29/npm3 might serve as a stem cell marker in the intestine during metamorphosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn J, Liu X, Cheng D, Peng J, Chan P, Wade P, Ye K (2005) Nucleophosmin/B23, a nuclear PI(3,4,5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol Cell 18:435–445

    Article  PubMed  CAS  Google Scholar 

  • Barker N, Es JH van, Kuipers J, Kujala P, Born M van den, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Cai L (2007) Amphibian metamorphosis. Dev Biol 306:20–33

    Article  PubMed  CAS  Google Scholar 

  • Buchholz D, Heimeier R, Das B, Washington T, Shi Y-B (2007) Pairing morphology with gene expression in thyroid hormone-induced intestinal remodeling and identification of a core set of TH-induced genes across tadpole tissues. Dev Biol 303:576–590

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Bjerknes M (1985) Whole population cell kinetics and postnatal development of the mouse intestinal epithelium. Anat Rec 211:420–426

    Article  PubMed  CAS  Google Scholar 

  • Colombo E, Marine J, Danovi D, Falini B, Pelicci P (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4:529–533

    Article  PubMed  CAS  Google Scholar 

  • Das B, Cai L, Carter M, Piao Y, Sharov A, Ko M, Brown D (2006) Gene expression changes at metamorphosis induced by thyroid hormone in Xenopus laevis tadpoles. Dev Biol 291:342–355

    Article  PubMed  CAS  Google Scholar 

  • Dodd MHI, Dodd JM (1976) The biology of metamorphosis. In: Lofts B (ed) Physiology of Amphibia. Academic Press, New York, pp 444–599

    Google Scholar 

  • Eirín-López J, Frehlick L, Ausió J (2006) Long-term evolution and functional diversification in the members of the nucleophosmin/nucleoplasmin family of nuclear chaperones. Genetics 173:1835–1850

    Article  PubMed  Google Scholar 

  • Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K, Pandolfi P (2005) Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437:147–153

    Article  PubMed  CAS  Google Scholar 

  • Hasebe T, Hartman R, Matsuda H, Shi Y-B (2006) Spatial and temporal expression profiles suggest the involvement of gelatinase A and membrane type 1 matrix metalloproteinase in amphibian metamorphosis. Cell Tissue Res 324:105–116

    Article  PubMed  CAS  Google Scholar 

  • Hasebe T, Kajita M, Fujimoto K, Yaoita Y, Ishizuya-Oka A (2007) Expression profiles of the duplicated matrix metalloproteinase-9 genes suggest their different roles in apoptosis of larval intestinal epithelial cells during Xenopus laevis metamorphosis. Dev Dyn 236:2338–2345

    Article  PubMed  CAS  Google Scholar 

  • Hasebe T, Kajita M, Shi Y-B, Ishizuya-Oka A (2008) Thyroid hormone-up-regulated hedgehog interacting protein is involved in larval-to-adult intestinal remodeling by regulating sonic hedgehog signaling pathway in Xenopus laevis. Dev Dyn 237:3006–3015

    Article  PubMed  CAS  Google Scholar 

  • Hasebe T, Buchholz DR, Shi Y-B, Ishizuya-Oka A (2011) Epithelial-connective tissue interactions induced by thyroid hormone receptor are essential for adult stem-cell development in the Xenopus laevis intestine. Stem Cells 29:154–161

    Google Scholar 

  • Heimeier R, Das B, Buchholz D, Fiorentino M, Shi Y-B (2010) Studies on Xenopus laevis intestine reveal biological pathways underlying vertebrate gut adaptation from embryo to adult. Genome Biol 11:R55

    Article  PubMed  Google Scholar 

  • Hourdry J, Dauca M (1977) Cytological and cytochemical changes in the intestinal epithelium during anuran metamorphosis. Int Rev Cytol Suppl 5:337–385

    Google Scholar 

  • Huang N, Negi S, Szebeni A, Olson M (2005) Protein NPM3 interacts with the multifunctional nucleolar protein B23/nucleophosmin and inhibits ribosome biogenesis. J Biol Chem 280:5496–5502

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka A, Shi Y-B (2007) Regulation of adult intestinal epithelial stem cell development by thyroid hormone during Xenopus laevis metamorphosis. Dev Dyn 236:3358–3368

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka A, Shi Y-B (2008) Thyroid hormone regulation of stem cell development during intestinal remodeling. Mol Cell Endocrinol 288:71–78

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka A, Ueda S (1996) Apoptosis and cell proliferation in the Xenopus small intestine during metamorphosis. Cell Tissue Res 286:467–476

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka A, Ueda S, Inokuchi T, Amano T, Damjanovski S, Stolow M, Shi Y-B (2001) Thyroid hormone-induced expression of sonic hedgehog correlates with adult epithelial development during remodeling of the Xenopus stomach and intestine. Differentiation 69:27–37

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka A, Shimizu K, Sakakibara S, Okano H, Ueda S (2003) Thyroid hormone-upregulated expression of Musashi-1 is specific for progenitor cells of the adult epithelium during amphibian gastrointestinal remodeling. J Cell Sci 116:3157–3164

    Article  PubMed  CAS  Google Scholar 

  • Ishizuya-Oka A, Hasebe T, Buchholz D, Kajita M, Fu L, Shi Y-B (2009) Origin of the adult intestinal stem cells induced by thyroid hormone in Xenopus laevis. FASEB J 23:2568–2575

    Article  PubMed  CAS  Google Scholar 

  • Itahana K, Bhat K, Jin A, Itahana Y, Hawke D, Kobayashi R, Zhang Y (2003) Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 12:1151–1164

    Article  PubMed  CAS  Google Scholar 

  • Kordylewski L (1983) Light and electron microscopic observations of the development of intestinal musculature in Xenopus. Z Mikrosk Anat Forsch 97:719–734

    PubMed  CAS  Google Scholar 

  • Madara JL, Trier JS (1994) Functional morphology of the mucosa of the small intestine. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven, New York, pp 1577–1622

    Google Scholar 

  • Marshall JA, Dixon KE (1978) Cell specialization in the epithelium of the small intestine of feeding Xenopus laevis tadpoles. J Anat 126:133–144

    PubMed  CAS  Google Scholar 

  • Matsuda H, Shi Y-B (2010) An essential and evolutionarily conserved role of protein arginine methyltransferase 1 for adult intestinal stem cells during postembryonic development. Stem Cells 28:2073–2083

    Article  PubMed  CAS  Google Scholar 

  • McAvoy JW, Dixon KE (1977) Cell proliferation and renewal in the small intestinal epithelium of metamorphosing and adult Xenopus laevis. J Exp Zool 202:129–138

    Article  Google Scholar 

  • Motoi N, Suzuki K, Hirota R, Johnson P, Oofusa K, Kikuchi Y, Yoshizato K (2008) Identification and characterization of nucleoplasmin 3 as a histone-binding protein in embryonic stem cells. Dev Growth Differ 50:307–320

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1956) Normal table of Xenopus laevis (Daudin). Elsevier North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Okuda M, Horn H, Tarapore P, Tokuyama Y, Smulian A, Chan P, Knudsen E, Hofmann I, Snyder J, Bove K, Fukasawa K (2000) Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103:127–140

    Article  PubMed  CAS  Google Scholar 

  • Okuwaki M (2008) The structure and functions of NPM1/Nucleophosmin/B23, a multifunctional nucleolar acidic protein. J Biochem 143:441–448

    Article  PubMed  CAS  Google Scholar 

  • Potten CS, Booth C, Tudor GL, Booth D, Brady G, Hurley P, Ashton G, Clarke R, Sakakibara S, Okano H (2003) Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 71:28–41

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos M, Melton DA, McMahon AP (2000) Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127:2763–2772

    PubMed  CAS  Google Scholar 

  • Savkur R, Olson M (1998) Preferential cleavage in pre-ribosomal RNA by protein B23 endoribonuclease. Nucleic Acids Res 26:4508–4515

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Zachmann M, Hügle-Dörr B, Franke W (1987) A constitutive nucleolar protein identified as a member of the nucleoplasmin family. EMBO J 6:1881–1890

    PubMed  CAS  Google Scholar 

  • Shackleford G, Ganguly A, MacArthur C (2001) Cloning, expression and nuclear localization of human NPM3, a member of the nucleophosmin/nucleoplasmin family of nuclear chaperones. BMC Genomics 2:8

    Article  PubMed  CAS  Google Scholar 

  • Shi Y-B (1999) Amphibian metamorphosis: from morphology to molecular biology. Wiley, New York

    Google Scholar 

  • Shi Y-B, Ishizuya-Oka A (1996) Biphasic intestinal development in amphibians: embryogenesis and remodeling during metamorphosis. Curr Top Dev Biol 32:205–235

    Article  PubMed  CAS  Google Scholar 

  • Shi Y-B, Ishizuya-Oka A (2001) Thyroid hormone regulation of apoptotic tissue remodeling: implications from molecular analysis of amphibian metamorphosis. Prog Nucleic Acid Res Mol Biol 65:53–100

    Article  PubMed  CAS  Google Scholar 

  • Shi Y-B, Liang V (1994) Cloning and characterization of the ribosomal protein L8 gene from Xenopus laevis. Biochim Biophys Acta 1217:227–228

    PubMed  CAS  Google Scholar 

  • Sun G, Hasebe T, Fujimoto K, Lu R, Fu L, Matsuda H, Kajita M, Ishizuya-Oka A, Shi Y-B (2010) Spatio-temporal expression profile of stem cell-associated gene LGR5 in the intestine during thyroid hormone-dependent metamorphosis in Xenopus laevis. PLoS ONE 5:e13605

    Article  PubMed  Google Scholar 

  • Suzuki K, Machiyama F, Nishino S, Watanabe Y, Kashiwagi K, Kashiwagi A, Yoshizato K (2009) Molecular features of thyroid hormone-regulated skin remodeling in Xenopus laevis during metamorphosis. Dev Growth Differ 51:411–427

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Kashiwagi K, Ujihara M, Marukane T, Tazaki A, Watanabe K, Mizuno N, Ueda Y, Kondoh H, Kashiwagi A, Mochii M (2010) Characterization of a novel type I keratin gene and generation of transgenic lines with fluorescent reporter genes driven by its promoter/enhancer in Xenopus laevis. Dev Dyn 239:3172–3181

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan V, Kishore A, Febitha K, Kundu T (2005) Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription. Mol Cell Biol 25:7534–7545

    Article  PubMed  CAS  Google Scholar 

  • Turner DL, Weintraub H (1994) Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev 15:1434–1447

    Article  Google Scholar 

  • Veldhoen N, Crump D, Werry K, Helbing C (2002) Distinctive gene profiles occur at key points during natural metamorphosis in the Xenopus laevis tadpole tail. Dev Dyn 225:457–468

    Article  PubMed  CAS  Google Scholar 

  • Zirwes R, Schmidt-Zachmann M, Franke W (1997) Identification of a small, very acidic constitutive nucleolar protein (NO29) as a member of the nucleoplasmin family. Proc Natl Acad Sci USA 94:11387–11392

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Mitsuko Kajita (Nippon Medical School) for her technical help. Part of this research was performed when K.S. and N.M. were affiliated to the Graduate School of Science, Hiroshima University, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi T. Suzuki.

Additional information

Natsuki Motoi and Takashi Hasebe contributed equally to this work.

This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) to K.S. and A.I.-O., a Narishige Zoological Science Award to T.H., and a grant from the Naito Foundation to K.S. Additional support by the “Global COE Program” of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan is gratefully acknowledged by K.S.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motoi, N., Hasebe, T., Suzuki, Ki.T. et al. Spatiotemporal expression profile of no29/nucleophosmin3 in the intestine of Xenopus laevis during metamorphosis. Cell Tissue Res 344, 445–453 (2011). https://doi.org/10.1007/s00441-011-1163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1163-0

Keywords

Navigation