Skip to main content

Advertisement

Log in

Development and characterization of a mouse floxed Bmp2 osteoblast cell line that retains osteoblast genotype and phenotype

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Bone morphogenetic protein 2 (Bmp2) is essential for osteoblast differentiation and osteogenesis. Generation of floxed Bmp2 osteoblast cell lines is a valuable tool for studying the effects of Bmp2 on osteoblast differentiation and its signaling pathways during skeletal metabolism. Due to relatively limited sources of primary osteoblasts, we have developed cell lines that serve as good surrogate models for the study of osteoblast cell differentiation and bone mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 osteoblast cell lines. Primary mouse floxed Bmp2 osteoblasts were transfected with pSV3-neo and clonally selected. These transfected cells were verified by PCR and immunohistochemistry. To determine the genotype and phenotype of the immortalized cells, cell morphology, proliferation, differentiation and mineralization were analyzed. Also, expression of osteoblast-related gene markers including Runx2, Osx, ATF4, Dlx3, bone sialoprotein, dentin matrix protein 1, osteonectin, osteocalcin and osteopontin were examined by quantitative RT-PCR and immunohistochemistry. These results showed that immortalized floxed Bmp2 osteoblasts had a higher proliferation rate but preserved their genotypic and phenotypic characteristics similar to the primary cells. Thus, we, for the first time, describe the development of immortalized mouse floxed Bmp2 osteoblast cell lines and present a useful model to study osteoblast biology mediated by BMP2 and its downstream signaling transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Bmp2 :

Bone morphogenetic protein 2

BrdU:

5-bromo-2'-deoxyuridine

ALP :

Alkaline phosphatase

ATF4 :

Activating transcription factor 4

Bsp :

Bone sialoprotein

Col1α1 :

Alpha 1 collagen type

Dlx3 :

Distal-less 3

Dmp1 :

Dentin matrix protein 1

Gadph :

Glyceraldehyde-3-phosphate dehydrogenase

Oc :

Osteocalcin

Opn :

Osteopontin

Osn :

Osteonectin

Osx :

Osterix

SV40:

SV40 large T-antigen.

References

  • Ameri K, Harris AL (2008) Activating transcription factor 4. Int J Biochem Cell Biol 40:14–21

    Article  PubMed  CAS  Google Scholar 

  • Aubin JE, Liu F (1996) In principles of bone biology. Academic, San Diego, pp 51–67

    Google Scholar 

  • Avantaggiati ML, Carbone M, Graessmann A, Nakatani Y, Howard B, Levine AS (1996) The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J 15:2236–2248

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2:2116–2130

    Article  CAS  Google Scholar 

  • Bax BE, Wozney JM, Ashhurst DE (1999) Bone morphogenetic protein-2 increases the rate of callus formation after fracture of the rabbit tibia. Calcif Tissue Int 65:83–89

    Article  PubMed  CAS  Google Scholar 

  • Bodine PV, Trailsmith M, Komm BS (1996) Development and characterization of a conditionally transformed adult human osteoblastic cell line. J Bone Miner Res 11:806–819

    Article  PubMed  CAS  Google Scholar 

  • Carbone M, Pannuti A, Zhang L, Testa JR, Bocchetta M (2008) A novel mechanism of late gene silencing drives SV40 transformation of human mesothelial cells. Cancer Res 68:9488–9496

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Campisi J, Padmanabhan R (1996) SV40 large T antigen transactivates the human cdc2 promoter by inducing a CCAAT box binding factor. J Biol Chem 271:13959–13967

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Rani S, Wu Y, Unterbrink A, Gu TT, Gluhak-Heinrich J, Chuang HH, Macdougall M (2005) Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Biol Chem 280:29717–29727

    Article  PubMed  CAS  Google Scholar 

  • Chung CY, Iida-Klein A, Wyatt LE, Rudkin GH, Ishida K, Yamaguchi DT, Miller T (1999) Serial passage of MC3T3-E1 cells alters osteoblastic function and responsiveness to transforming growth factor-beta1 and bone morphogenetic protein-2. Biochem Biophy Res Commun 265:246–251

    Article  CAS  Google Scholar 

  • Damania B, Alwine JC (1996) TAF-like function of SV40 large T antigen. Genes Dev 10:1369–1381

    Article  PubMed  CAS  Google Scholar 

  • Darimont C, Avanti O, Tromvoukis Y, Vautravers-Leone P, Kurihara N, Roodman GD, Colgin LM, Tullberg-Reinert H, Pfeifer AM, Offord EA, Mace K (2002) SV40 T antigen and telomerase are required to obtain immortalized human adult bone cells without loss of the differentiated phenotype. Cell Growth Differ 13:59–67

    PubMed  CAS  Google Scholar 

  • Dong J, Amor D, Aldred MJ, Gu T, Escamilla M, MacDougall M (2005) DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. Am J Med Genet A 133A:138–141

    Article  PubMed  Google Scholar 

  • Divieti P, Lanske B, Kronenberg HM, Bringhurst FR (1998) Conditionally immortalized murine osteoblasts lacking the type 1 PTH/PTHrP receptor. J Bone Miner Res 13:1835–1845

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Karsenty G (2000) The family of bone morphogenetic proteins. Kidney Int 57:2207–2214

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Zhang MR, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  PubMed  CAS  Google Scholar 

  • Duverger O, Lee D, Hassan MQ, Chen SX, Jaisser F, Lian JB, Morasso MI (2008) Molecular consequences of a frameshifted DLX3 mutant leading to Tricho-Dento-Osseous syndrome. J Biol Chem 283:20198–20208

    Article  PubMed  CAS  Google Scholar 

  • Fei Y, Xiao L, Hurley MM (2010) Fibroblast growth factor 2 positively regulates expression of activating transcription factor 4 in osteoblasts. Biochem Biophys Res Commun 391:335–339

    Article  PubMed  CAS  Google Scholar 

  • Franceschi RT, Ge C, Xiao G, Roca H, Jiang D (2007) Transcriptional regulation of osteoblasts. Ann NY Acad Sci 1116:196–207

    Article  PubMed  CAS  Google Scholar 

  • Gagneten S, Le Y, Miller J, Sauer B (1997) Brief expression of a GFP cre fusion gene in embryonic stem cells allows rapid retrieval of site-specific genomic deletions. Nucleic Acids Res 25:3326–3331

    Article  PubMed  CAS  Google Scholar 

  • Galler KM, Schweikl H, Thonemann B, D'Souza RN, Schmalz G (2006) Human pulp-derived cells immortalized with Simian Virus 40 T-antigen. Eur J Oral Sci 114:138–146

    Article  PubMed  CAS  Google Scholar 

  • Gannon JV, Lane DP (1987) p53 and DNA polymerase alpha compete for binding to SV40 T antigen. Nature 329:456–458

    Article  PubMed  CAS  Google Scholar 

  • Hassan MQ, Tare RS, Lee SH, Mandeville M, Morasso MI, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2006) BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network. J Biol Chem 281:40515–40526

    Article  PubMed  CAS  Google Scholar 

  • Herzig M, Novatchkova M, Christofori G (1999) An unexpected role for p53 in augmenting SV40 large T antigen-mediated tumorigenesis. Biol Chem 380:203–211

    Article  PubMed  CAS  Google Scholar 

  • Hoffman BE, Newman-Tarr TM, Gibbard A, Wang S, Hanning C, Pratta MA, Boyle RJ, Kumar S, Majumdar MK (2010) Development and characterization of a human articular cartilage-derived chondrocyte cell line that retains chondrocyte phenotype. J Cell Physiol 222:695–702

    PubMed  CAS  Google Scholar 

  • Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10:1580–1594

    Article  PubMed  CAS  Google Scholar 

  • Iwata T, Yamakoshi Y, Simmer JP, Ishikawa I, Hu JC (2007) Establishment of porcine pulp-derived cell lines and expression of recombinant dentin sialoprotein and recombinant dentin matrix protein-1. Eur J Oral Sci 115:48–56

    Article  PubMed  CAS  Google Scholar 

  • Javed A, Bae JS, Afzal F, Gutierrez S, Pratap J, Zaidi SK, Lou Y, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2008) Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal. J Biol Chem 283:8412–8422

    Article  PubMed  CAS  Google Scholar 

  • Karsenty G (2008) Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet 9:183–196

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Yamaguchi A, Ikeda T, Yoshiki S, Wozney JM, Rosen V, Wang EA, Tanaka H, Omura S, Suda T (1990) The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun 172:295–299

    Article  PubMed  CAS  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  PubMed  CAS  Google Scholar 

  • Kubler NR, Reuther JF, Faller G, Kirchner T, Ruppert R, Sebald W (1998) Inductive properties of recombinant human BMP-2 produced in a bacterial expression system. Int J Oral Maxillofac Surg 27:305–309

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G (1997) Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 16:307–310

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Jeong JW, Wang J, Ma L, Martin JF, Tsai SY, Lydon JP, DeMayo FJ (2007) Bmp2 is critical for the murine uterine decidual response. Mol Cell Biol 27:5468–5478

    Article  PubMed  CAS  Google Scholar 

  • Ludlow JW, Shon J, Pipas JM, Livingston DM, DeCaprio JA (1990) The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T. Cell 60:387–396

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Martin JF (2005) Generation of a Bmp2 conditional null allele. Genesis 42:203–206

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Lu MF, Schwartz RJ, Martin JF (2005) Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132:5601–5611

    Article  PubMed  CAS  Google Scholar 

  • Marie PJ (1998) In advances in organ biology. JAI, Stamford, pp 445–473

    Google Scholar 

  • Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, Aburatani H, Nishimura R, Yoneda T (2008) BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem 283:29119–29125

    Article  PubMed  CAS  Google Scholar 

  • Matsuda T, Cepko CL (2007) Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci USA 104:1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Michalovitz D, Eliyahu D, Oren M (1986) Overproduction of protein p53 contributes to simian virus 40-mediated transformation. Mol Cell Biol 6:3531–3536

    PubMed  CAS  Google Scholar 

  • Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89:773–779

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  PubMed  CAS  Google Scholar 

  • Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Article  PubMed  CAS  Google Scholar 

  • Park GT, Morasso MI (2002) Bone morphogenetic protein-2 (BMP-2) transactivates Dlx3 through Smad1 and Smad4: alternative mode for Dlx3 induction in mouse keratinocytes. Nucleic Acids Res 30:515–522

    Article  PubMed  CAS  Google Scholar 

  • Porcu P, Ferber A, Pietrzkowski Z, Roberts CT, Adamo M, LeRoith D, Baserga R (1992) The growth-stimulatory effect of simian virus 40 T antigen requires the interaction of insulinlike growth factor 1 with its receptor. Mol Cell Biol 12:5069–5077

    PubMed  CAS  Google Scholar 

  • Price JA, Bowden DW, Wright JT, Pettenati MJ, Hart TC (1998) Identification of a mutation in DLX3 associated with tricho-dento-osseous (TDO) syndrome. Hum Mol Genet 7:563–569

    Article  PubMed  CAS  Google Scholar 

  • Quack I, Vonderstrass B, Stock M, Aylsworth AS, Becker A, Brueton L, Lee PJ, Majewski F, Mulliken JB, Suri M, Zenker M, Mundlos S, Otto F (1999) Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia. Am J Hum Genet 65:1268–1278

    Article  PubMed  CAS  Google Scholar 

  • Reddi AH (1997) Bone morphogenetic proteins: an unconventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Rev 8:11–20

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Feliciano J, Tabin CJ (2006) Bmp2 instructs cardiac progenitors to form the heart-valve-inducing field. Dev Biol 295:580–588

    Article  PubMed  CAS  Google Scholar 

  • Rosen V (2009) BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev 20:475–480

    Article  PubMed  CAS  Google Scholar 

  • Royzman I, Whittaker AJ, Orr-Weaver TL (1997) Mutations in Drosophila DP and E2F distinguish G1-S progression from an associated transcriptional program. Genes Dev 11:1999–2011

    Article  PubMed  CAS  Google Scholar 

  • Singh AP, Castranio T, Scott G, Guo D, Harris MA, Ray M, Harris SE, Mishina Y (2008) Influences of reduced expression of maternal bone morphogenetic protein 2 on mouse embryonic development. Sex Dev 3:134–141

    Article  Google Scholar 

  • Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M (1996) Transcriptional control of osteoblast growth and differentiation. Physiol Rev 76:593–629

    PubMed  CAS  Google Scholar 

  • Takeshita S, Arai S, Kudo A (2001) Identification and characterization of mouse bone marrow stromal cell lines immortalized by temperature-sensitive SV40 T antigen: supportive activity for osteoclast differentiation. Bone 29:236–241

    Article  PubMed  CAS  Google Scholar 

  • Takuwa Y, Ohse C, Wang EA, Wozney JM, Yamashita K (1991) Bone morphogenetic protein-2 stimulates alkaline phosphatase activity and collagen synthesis in cultured osteoblastic cells, MC3T3-E1. Biochem Biophys Res Commun 174:96–101

    Article  PubMed  CAS  Google Scholar 

  • Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38:1424–1429

    Article  PubMed  CAS  Google Scholar 

  • Ulsamer A, Ortuño MJ, Ruiz S, Susperregui AR, Osses N, Rosa JL, Ventura F (2008) BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J Biol Chem 283:3816–3826

    Article  PubMed  CAS  Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  PubMed  CAS  Google Scholar 

  • Welch RD, Jones AL, Bucholz RW, Reinert CM, Tjia JS, Pierce WA, Wozney JM, Li XJ (1998) Effect of recombinant human bone morphogenetic protein-2 on fracture healing in a goat tibial fracture model. J Bone Miner Res 13:1483–1490

    Article  PubMed  CAS  Google Scholar 

  • Winn SR, Randolph G, Uludag H, Wong SC, Hair GA, Hollinger JO (1999) Establishing an immortalized human osteoprecursor cell line: OPC1. J Bone Miner Res 14:1721–1733

    Article  PubMed  CAS  Google Scholar 

  • Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz R, Hewick R, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    Article  PubMed  CAS  Google Scholar 

  • Wright JT, Hong SP, Simmons D, Daly B, Uebelhart D, Luder HU (2008) DLX3 c.561_562delCT mutation causes attenuated phenotype of tricho-dento-osseous syndrome. Am J Med Genet A 146:343–349

    PubMed  Google Scholar 

  • Wu XB, Schneider A, Yu W, Rajendren Iqbal GJ, Yamamoto M, Alam M, Brunet LJ, Blair HC, Zaidi M, Abe E (2003) Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice. J Clin Invest 112:924–993

    PubMed  CAS  Google Scholar 

  • Wu LA, Yuan G, Yang G, Ortiz-Gonzalez I, Yang W, Cui Y, MacDougall M, Donly KJ, Harris S, Chen S (2009) Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts. Biochem Biophys Res Commun 386:89–95

    Article  PubMed  CAS  Google Scholar 

  • Xiao G, Jiang D, Ge C, Zhao Z, Lai Y, Boules H, Phimphilai M, Yang X, Karsenty G, Franceschi RT (2005) Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem 280:30689–30696

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Katagiri T, Ikeda T, Wozney JM, Rosen V, Wang EA, Kahn AJ, Suda T, Yoshiki S (1991) Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. J Cell Biol 113:681–687

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 117:387–398

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122:2977–2986

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institute of Health Grant DE019892 (S.C.), San Antonio Area Foundation (S.C.) and the grant from the Natural Science Foundation of China 30801293 (L.A. Wu) and 2009-10 3 M ESPE Preventative Pediatric Dentistry Postdoctoral Research Fellowship of AAPD (L.A. Wu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, La., Feng, J., Wang, L. et al. Development and characterization of a mouse floxed Bmp2 osteoblast cell line that retains osteoblast genotype and phenotype. Cell Tissue Res 343, 545–558 (2011). https://doi.org/10.1007/s00441-010-1120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1120-3

Keywords

Navigation