Skip to main content

Advertisement

Log in

Family of CNP neuropeptides: common morphology in various invertebrates

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Neuropeptides expressed in the command neurons for withdrawal behavior were originally detected in the the central nervous system (CNS) of the terrestrial snail Helix (command neurons peptides, CNP). The family of CNP-like neuropeptides bears a C-terminal signature sequence Tyr-Pro-Arg-X. Using antisera against two of them, we have studied the CNS of various invertebrates belonging to the phyla of mollusks, annelids and insects. The immunoreactive neurons were detected in all studied species. Stained neurons were either interneurons projecting along the CNS ganglia chain, or sensory neurons, or neurohormonal cells. Beyond common morphological features, the immunoreactive cells had another similarity: the level of CNP expression depended on the functional state of the animal. Thus, the homologous neuropeptides in evolutionary distant invertebrate species possess some common morphological and functional features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Yousuf S (1990) Neuropeptides in annelids. Prog Clin Biol Res 342:232–241

    PubMed  CAS  Google Scholar 

  • Alumets J, Hakanson R, Sundler F, Thorell J (1979) Neuronal localization of immunoreactive enkephalin and beta-endorphin in the earthworm. Nature 279:805–806

    Article  PubMed  CAS  Google Scholar 

  • Aros B, Wenger T, Vigh B, Vigh-Teichmann I (1980) Immunohistochemical localization of substance P and ACTH-like activity in the central nervous system of the earthworm Lumbricus terrestris L. Acta Histochem 66:262–268

    PubMed  CAS  Google Scholar 

  • Aseyev N, Ierusalimsky V, Boguslavsky D, Balaban P (2005) Snail peptide expression pattern in the nervous system of the medicinal leech. Brain Res Mol Brain Res 140:99–105

    Article  PubMed  CAS  Google Scholar 

  • Audsley N, Weaver RJ (2006) Analysis of peptides in the brain and corpora cardiaca-corpora allata of the honey bee, Apis mellifera using MALDI-TOF mass spectrometry. Peptides 27:512–520

    Article  PubMed  CAS  Google Scholar 

  • Baggerman G, Cerstiaens A, De Loof A, Schoofs L (2002) Peptidomics of the larval Drosophila melanogaster central nervous system. J Biol Chem 277:40368–40374

    Article  PubMed  CAS  Google Scholar 

  • Baggerman G, Boonen K, Verleyen P, De Loof A, Schoofs L (2005) Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J Mass Spectrom 40:250–260

    Article  PubMed  CAS  Google Scholar 

  • Bainbridge SP, Bownes M (1981) Staging the metamorphosis of Drosophila melanogaster. J Embryol Exp Morph 66:57–80

    PubMed  CAS  Google Scholar 

  • Balaban PM (1979) A system of command neurons in snail’s escape behavior. Acta Neurobiol Exp 39:97–107

    CAS  Google Scholar 

  • Balaban PM, Zakharov IS (1992) Learning and development: common base of the two phenomens. Nauka, Moscow (in Russian)

  • Balaban PM, Poteryaev DA, Zakharov IS, Uvarov P, Malyshev A, Belyavsky AV (2001) Up- and down-regulation of Helix command-specific 2 (HCS2) gene expression in the nervous system of terrestrial snail Helix lucorum. Neuroscience 103:551–559

    Article  PubMed  CAS  Google Scholar 

  • Balaban PM, Malyshev AY, Zakharov IS, Aseev NA, Bravarenko NI, Ierusalimsky VN, Samarova AI, Vorontzov DD, Popova Y, Boyle R (2006) Structure and function of the snail statocyst system after a 16-day flight on Foton M-2. J Gravit Physiol 13:201–204

    Google Scholar 

  • Banvolgyi T, Barna J, Csoknya M, Lengvari I, Hamori J (1994) The number of ganglion cells in the intact and regenerated nervous system in the earthworm (Lumbricus terrestris). Acta Biol Hung 45:179–184

    PubMed  CAS  Google Scholar 

  • Barr PJ (1991) Mammalian subtilisins: the long-sought dibasic processing endopeptidases. Cell 66:1–3

    Article  PubMed  CAS  Google Scholar 

  • Bogdanov YD, Balaban PM, Poteryaev DF, Zakharov IS, Belyavsky AV (1998) Putative neuropeptides and EF-hand motif region are encoded by a novel gene expressed in the four giant interneurons of the terrestrial snail. Neurosci 85:637–647

    Article  CAS  Google Scholar 

  • Bodenstein D (1950) The postembryonic development of Drosophila. In: Demerec M (ed) Biology of Drosophila. Wiley, New York,, pp 275–367

  • Bright K, Kellett E, Saunders SE, Brierley M, Burke JF, Benjamin PR (1993) Mutually exclusive expression of alternatively spliced FMRFamide transcripts in identified neuronal systems of the snail Lymnaea. J Neurosci 13:2719–2729

    PubMed  CAS  Google Scholar 

  • Brodfuehrer PD, Friesen WO (1986) Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. I. Output connections of Tr1 and Tr2. J Comp Physiol 159:489–502

    Article  CAS  Google Scholar 

  • Brodfuehrer PD, Parker HJ, Burns A, Berg M (1995) Regulation of the segmental swim- generating system by a pair of identified interneurons in the leech head ganglion. J Neurophysiol 73:983–992

    PubMed  CAS  Google Scholar 

  • Choi M-Y, Rafaeli A, Jurenka RA (2001) Pyrokinin/PBAN-like peptides in the central nervous system of Drosophila melanogaster. Cell Tissue Res 306:459–465

    Google Scholar 

  • Davis NT, Homberg U, Teal PE, Altstein M, Agricola HJ, Hildebrand JG (1996) Neuroanatomy and immunocytochemistry of the median neuroendocrine cells of the subesophageal ganglion of the tobacco hawkmoth, Manduca sexta: immunoreactivities to PBAN and other neuropeptides. Microsc Res Tech 35:201–229

    Article  PubMed  CAS  Google Scholar 

  • Denker M, Finke R, Schaupp F, Grün S, Menzel R (2010) Neural correlates of odor learning in the honeybee antennal lobe. Eur J Neurosci 31:119–133

    Article  PubMed  Google Scholar 

  • Eckert M, Predel R, Gundel M (1999) Periviscerokinin-like immunoreactivity in the nervous system of the American cockroach. Cell Tissue Res 295:159–170

    Article  PubMed  CAS  Google Scholar 

  • Ferguson G, Benjamin PR (1991) The whole-body withdrawal response of Lymnaea stagnalis. I. Identification of central motoneurones and muscles. J Exp Biol 158:63–95

    PubMed  CAS  Google Scholar 

  • Hagino A, Kitagawa N, Imai K, Yamashita O, Shiomi K (2010) Immunoreactive intensity of FXPRL amide neuropeptides in response to environmental conditions in the silkworm, Bombyx mori. Cell Tissue Res 342:459–469

    Article  PubMed  CAS  Google Scholar 

  • Hummon AB, Richmond TA, Verleyen P, Baggerman G, Huybrechts J et al (2006) From the genome to the proteome: uncovering peptides in the Apis brain. Science 314:647–649

    Article  PubMed  CAS  Google Scholar 

  • Ierusalimsky VN, Balaban PM (2001) Ontogenesis of the snail, Helix aspersa: embryogenesis timetable and ontogenesis of GABA-like immunoreactive neurons in the central nervous system. J Neurocytol 30:73–91

    Article  PubMed  CAS  Google Scholar 

  • Ierusalimsky VN, Balaban PM (2003) Novel family of neuropeptides: immunoreactive neurons in several invertebrate species. VI IBRO Congress, Prague, Abstracts, 2380

    Google Scholar 

  • Ierusalimsky VN, Balaban PM (2006) Immunoreactivity to molluskan neuropeptides in the central and stomatogastric nervous systems of the earthworm, Lumbricus terrestris L. Cell Tissue Res 325:555–565

    Article  PubMed  CAS  Google Scholar 

  • Ierusalimsky VN, Balaban PM (2007a) Neuropeptides of Drosophila related to molluscan neuropeptides: dependence of the immunoreactivity pattern on the ontogenetic stage and functional state. Brain Res 1152:32–41

    Article  PubMed  CAS  Google Scholar 

  • Ierusalimsky VN, Balaban PM (2007b) Primary sensory neurons containing command neuron peptide constitute a morphologically distinct class of sensory neurons in the terrestrial snail. Cell Tissue Res 330:169–177

    Article  PubMed  CAS  Google Scholar 

  • Ierusalimsky VN, Boguslavsky DV, Belyavsky AV, Balaban PM (2003) Helix peptide immunoreactivity pattern in the nervous system of juvenile aplysia. Brain Res Mol Brain Res 120:84–89

    Article  PubMed  CAS  Google Scholar 

  • Imai K, Konno T, Nakazawa Y, Komiya T, Isobe M, Koga K, Goto T, Yaginuma T, Sakakibara K, Hasegawa K (1991) Isolation and structure of diapause hormone of the silkworm, Bombyx mori. Proc Jpn Acad 67(B):98–101

    Article  CAS  Google Scholar 

  • Ivanova IuL, Leonova OG, Popenko VI, Ierusalimsky VN, Bogusalvsky DV, Korshunova TA, Malyshev AIu, Balaban PM, Beliavsky AV (2006) Intracellular localization of the HCS2 gene products in identified snail neurons in vivo and in vitro. Cell Mol Neurobiol 26:127–144

    Article  PubMed  CAS  Google Scholar 

  • Kiknadze II, Kolesnikov NN, Lopatin OE (1975) Chironomus Chironomus thummi Kieff. (laboratory culture). In: Objects of the biology of development. Nauka, Moscow, pp 95–128 (in Russian)

  • Korshunova TA, Malyshev AY, Zakharov IS, Ierusalimskii VN, Balaban PM (2006) Functions of peptide CNP4, encoded by the HCS2 gene, in the nervous system of Helix lucorum. Neurosci Behav Physiol 36:253–260

    Article  PubMed  CAS  Google Scholar 

  • Lengvari I, Csoknya M, Lubics A, Szelier M, Hamori J (1994) Proctolin immunoreactive elements in the nervous system of earthworm (Lumbricus terrestris). Acta Biol Hung 45:337–345

    PubMed  CAS  Google Scholar 

  • Lent CM, Dickinson MH (1984) Serotonin integrates the feeding behavior of the medicinal leech. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 154:457–471

    Article  CAS  Google Scholar 

  • Lewin MR, Walters ET (1999) Cyclic GMP pathway is critical for inducing long-term sensitization of nociceptive sensory neurons. Nat Neurosci 2:18–23

    Article  PubMed  CAS  Google Scholar 

  • Loi PK, Tublitz NJ (2004) Sequence and expression of the CAPA/CAP2b gene in the tobacco hawkmoth, Manduca sexta. J Exp Biol 207):3681–3691

    Article  PubMed  CAS  Google Scholar 

  • Malyshev AY, Balaban PM (2002) Identification of mechanoafferent neurons in terrestrial snail: response properties and synaptic connections. J Neurophysiol 87:2364–2371

    PubMed  Google Scholar 

  • Muller KJ, Nicholls JG, Stent GS (eds) (1981) Neurobiology of the leech. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Nachman RJ, Roberts VA, Dyson HL, Holman GM, Tainer JA (1991) Active conformation of an insect neuropeptide family. Proc Natl Acad Sci USA 88:4518–4522

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Kim WS, Torii S, Hosaka M, Nakagawa T (1992) Identification of the fourth member of the mammalian endoprotease family homologousto the yeast Kex2 protease: its testis-specific expression. J Biol Chem 267:5897–5900

    Google Scholar 

  • Nässel DR (1993) Neuropeptides in the insect brain: a review. Cell Tissue Res 273:1–29

    Article  PubMed  Google Scholar 

  • Nässel DR (2000) Functional roles of neuropeptides in the insect central nervous system. Naturwissenschaften87:439–449

  • Nässel DR (2002) Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 68:1–84

    Google Scholar 

  • O’Brien MA, Taghert PH (1998) A peritracheal neuropeptide system in insects: release of Myomodulin-like peptides at ecdysis. J Exp Biol 201:193–209

    PubMed  Google Scholar 

  • Olling JD, Ulrichsen J, Christensen DZ, Woldbye DP (2009) Complex plastic changes in the neuropeptide Y system during ethanol intoxication and withdrawal in the rat brain. Neurosci Res 87:2386–2397

    Article  CAS  Google Scholar 

  • Pisu MB, Conforti E, Scherini E, Bernocchi G (2000) Gastrin-cholecystokinin immunoreactivity in the central nervous system of Helix aspersa during rest and activity. J Exp Zool 287:29–37

    Article  PubMed  CAS  Google Scholar 

  • Predel R, Eckert M (2000) Neurosecretion: peptidergic systems in insects. Naturwissenschaften 87:343-350

    Google Scholar 

  • Predel R, Neupert S (2007) Social behavior and the evolution of neuropeptide genes: lessons from the honeybee genome. Bioessays 29:416–421

    Article  PubMed  CAS  Google Scholar 

  • Predel R, Wegener C (2006) Biology of the CAPA peptides in insects. Cell Mol Life Sci 63:2477–2490

    Google Scholar 

  • Predel R, Nachman RJ, Gade G (2001) Myostimulatory neuropeptides in cockroaches: structures, distribution, pharmacological activities, and mimetic analogs. J Insect Physiol 47:311–324

    Article  PubMed  CAS  Google Scholar 

  • Predel R, Wegener C, Russell WK, Tichy SE, Russell DH, Nachman RJ (2004) Peptidomics of CNS-associated neurohemal systems of adult Drosophila melanogaster: a mass spectrometric survey of peptides from individual flies. J Comp Neurol 474:379–392

    Article  PubMed  CAS  Google Scholar 

  • Predel R, Eckert M, Pollák E, Molnár L, Scheibner O, Neupert S (2007) Peptidomics of identified neurons demonstrates a highly differentiated expression pattern of FXPRLamides in the neuroendocrine system of an insect. J Comp Neurol 500:498–512

    Article  PubMed  CAS  Google Scholar 

  • Reglodi D, Slezak S, Lubics A, Szelier M, Elekes K, Lengvari I (1997) Distribution of FMRFamide-like immunoreactivity in the nervous system of Lumbricus terrestris. Cell Tissue Res 288:575–582

    Article  PubMed  CAS  Google Scholar 

  • Reglodi D, Lubics A, Szelier M, Lengvari I (1999) Gastrin- and cholecystokinin-like immunoreactivities in the nervous system of the earthworm. Peptides 20:569–577

    Article  PubMed  CAS  Google Scholar 

  • Rzasa PJ, Kaloustian KV, Prokop EK (1984) Immunochemical evidence for met-enkephalin-like and leu-enkephalin-like peptides in tissues of the earthworm, Lumbricus terrestris. Comp Biochem Physiol C 77:345–350

    Article  PubMed  CAS  Google Scholar 

  • Santos JG, Pollak E, Rexer KH, Molnar L, Wegener C (2006) Morphology and metamorphosis of the peptidergic Va neurons and the median nerve system of the fruit fly, Drosophila melanogaster. Cell Tissue Res 326:187–199

    Article  PubMed  CAS  Google Scholar 

  • Scales MD, Credland PF (1978) The ultrastructure of the non-neurosecretory components in the brain of the midge, Chironomus riparious Mg. (diptera: nematocera). Cell Tissue Res 187:355–366

    Article  PubMed  CAS  Google Scholar 

  • Shaw BK, Kristan WB Jr (1995) The whole-body shortening reflex of the medicinal leech: motor pattern, sensory basis, and interneuronal pathways. J Comp Physiol A 177:667–681

    Article  PubMed  CAS  Google Scholar 

  • Shaw BK, Kristan WB Jr (1999) Relative roles of the S cell network and parallel interneuronal pathways in the whole-body shortening reflex of the medicinal leech. J Neurophysiol 82:1114–1123

    PubMed  CAS  Google Scholar 

  • Singh YN, Singh M (1980) Metamorphic changes in the brain of Chironomus dolichotomus (Diptera:Chironomidae). J Hirnforsch 21:561–568

    PubMed  CAS  Google Scholar 

  • Staudacher E (1998) Distribution and morphology of descending brain neurons in the cricket gryllus bimaculatus. Cell Tissue Res 294:187–202

    Article  PubMed  Google Scholar 

  • Sundler F, Hakanson R, Alumets J, Walles B (1977) Neuronal localization of pancreatic polypeptide (PP) and vasoactive intestinal peptide (VIP) immunoreactivity in the earthworm (Lumbricus terrestris). Brain Res Bull 2:61–65

    Article  PubMed  CAS  Google Scholar 

  • Teal EA, Abernathy RL, Nachman RJ, Fang N, Meredith JA, Tumlinson JH (1996) Pheromone biosynthesis activating neuropeptides: functions and chemistry. Peptides 17:337–344

    Article  PubMed  CAS  Google Scholar 

  • Walters ET, Ambron RT (1995) Long-term alterations induced by injury and by 5-HT in sensory neurons: convergent pathways and common signals? Trends Neurosci 18:137–142

    Article  PubMed  CAS  Google Scholar 

  • Walters ET, Byrne JH, Carew TJ, Kandel ER (1983) Mechanoafferent neurons innervating tail of Aplysia. I. Response properties and synaptic connections. J Neurophysiol 50:1522–1542

    PubMed  CAS  Google Scholar 

  • Watanabe K, Hull JJ, Niimi T, Imai K, Matsumoto S, Yaginuma T, Kataoka H (2007) FXPRL-amide peptides induce ecdysteroidogenesis through a G-protein coupled receptor expressed in the prothoracic gland of Bombyx mori. Mol Cell Endocrinol 273:51–58

    Article  PubMed  CAS  Google Scholar 

  • Wegener C, Herbert Z, Eckert M, Predel R (2002) The periviscerokinin (PVK) peptide family in insects: evidence for the inclusion of CAP2b as a PVK family member. Peptides 23:605–611

    Article  PubMed  CAS  Google Scholar 

  • Wegener C, Reinl T, Jansch L, Predel R (2006) Direct mass spectrometric peptide profiling and fragmentation of larval peptide hormone release sites in Drosophila melanogaster reveals tagma-specific peptide expression and differential processing. J Neurochem 96:1362–1374

    Article  PubMed  CAS  Google Scholar 

  • Yau KW (1976) Physiological properties and receptive fields of mechanosensory neurones in the head ganglion of the leech: comparison with homologous cells in segmental ganglia. J Physiol 263:489–512

    PubMed  CAS  Google Scholar 

  • Zdarek J, Nachman RJ, Hayes TK (1998) Structure-activity relationships of insect neuropeptides of the pyrokinin/PBAN family and their selective action on pupariation in flesh fly (Neobelleria bullata) larvae (Diptera, Sarcophagidae). Eur J Entomol 95:9–16

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Russian Foundation for Basic Research grants 09-04-00617-a, 08-04-00446a, grant of the RF President Council for Grants to P.M.B., Russian Academy of Sciences Program, Program of Ministery of Education and Science “Scientific and Educational Staff of Innovative Russia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor N. Ierusalimsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ierusalimsky, V.N., Balaban, P.M. Family of CNP neuropeptides: common morphology in various invertebrates. Cell Tissue Res 343, 483–497 (2011). https://doi.org/10.1007/s00441-010-1119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1119-9

Keywords

Navigation