Skip to main content
Log in

Quantitative analysis of denatured collagen by collagenase digestion and subsequent MALDI-TOF mass spectrometry

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Collagens are the most abundant proteins in vertebrate tissues and constitute significant moieties of the extracellular matrix (ECM). The determination of the collagen content is of relevance not only in the field of native tissue research, but also regarding the quality assessment of bioengineered tissues. Here, we describe a quantitative method to assess small amounts of collagen based on MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry (MS) subsequent to digestion of collagen with clostridial collagenase (clostridiopeptidase A) in order to obtain characteristic oligopeptides. Among the resulting peptides, Gly-Pro-Hyp, which is highly indicative of collagen, has been used to assess the amount of collagen by comparing the Gly-Pro-Hyp peak intensities with the intensities of a spiked tripeptide (Arg-Gly-Asp). The approach presented herein is both simple and convenient and allows the determination of collagen in microgram quantities. In tissue samples such as cartilage, the actual collagen content has additionally been determined for comparative purposes by nuclear magnetic resonance spectroscopy subsequent to acidic hydrolysis. Both methods give consistent data within an experimental error of ±10%. Although the differentiation of the different collagen types cannot be achieved by this approach, the overall collagen contents of tissues can be easily determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  • Baldwin MA (2005) Mass spectrometers for the analysis of biomolecules. Methods Enzymol 402:3–48

    Article  PubMed  CAS  Google Scholar 

  • Bond MD, Van Wart HE (1984) Characterization of the individual collagenases from Clostridium histolyticum. Biochemistry 23:3085–3091

    Article  PubMed  CAS  Google Scholar 

  • Bornstein P, Traub W (1979) The chemistry and biology of collagen. In: Neurath H, Hill RL (eds) The proteins. Academic Press, New York, pp 411–632

    Google Scholar 

  • Brinckmann J (2005) Collagens at a glance. Top Curr Chem 247:1–6

    CAS  Google Scholar 

  • Cremer MA, Rosloniec EF, Kang AH (1998) The cartilage collagens: a review of their structure, organization, and role in the pathogenesis of experimental arthritis in animals and in human rheumatic disease. J Mol Med 76:275–288

    Article  PubMed  CAS  Google Scholar 

  • Deyl Z, Miksík I (1995) Separation of collagen type I chain polymers by electrophoresis in non-cross-linked polyacrylamide-filled capillaries. J Chromatogr A 698:369–373

    Article  CAS  Google Scholar 

  • Deyl Z, Miksík I, Eckhardt A (2003) Preparative procedures and purity assessment of collagen proteins. J Chromatogr B 790:245–275

    Article  CAS  Google Scholar 

  • Dreisewerd K, Rohlfing A, Spottke B, Urbanke C, Henkel W (2004) Characterization of whole fibril-forming collagen proteins of types I, III, and V from fetal calf skin by infrared matrix-assisted laser desorption ionization mass spectrometry. Anal Chem 76:3482–3491

    Article  PubMed  CAS  Google Scholar 

  • Edwards CA, O’Brien WD Jr (1980) Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clin Chim Acta 104:161–167

    Article  PubMed  CAS  Google Scholar 

  • Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4:30–35

    Article  PubMed  CAS  Google Scholar 

  • Eyre DR (2004) Collagens and cartilage matrix homeostasis. Clin Orthop Relat Res 427 (Suppl):S118–S122

    Article  PubMed  Google Scholar 

  • Eyre DR, Weis MA, Wu JJ (2006) Articular cartilage collagen: an irreplaceable framework? Eur Cell Mater 12:57–63

    PubMed  CAS  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  PubMed  CAS  Google Scholar 

  • Fuchs B, Arnold K, Schiller J (2008) Mass spectrometry of biological molecules. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 1–39

    Google Scholar 

  • Gordon MK, Hahn RA (2010) Collagens. Cell Tissue Res 339:247–257

    Article  PubMed  CAS  Google Scholar 

  • Haberhauer M, Zernia G, Deiwick A, Pösel C, Bader A, Huster D, Schulz RM (2008) Cartilage tissue engineering in plasma and whole blood scaffolds. Adv Mater 20:2061–2067

    Article  CAS  Google Scholar 

  • Hambleton J, Shakespeare PG (1991) Thermal damage to skin collagen. Burns 17:209–212

    Article  PubMed  CAS  Google Scholar 

  • Henkel W, Dreisewerd K (2007) Cyanogen bromide peptides of the fibrillar collagens I, III, and V and their mass spectrometric characterization: detection of linear peptides, peptide glycosylation, and cross-linking peptides involved in formation of homo- and heterotypic fibrils. J Proteome Res 6:4269–4289

    Article  PubMed  CAS  Google Scholar 

  • Huster D (2008) Solid-state NMR studies of collagen structure and dynamics in isolated fibrils and in biological tissues. Annu Rep NMR Spectrosc 64:127–159

    Article  CAS  Google Scholar 

  • Huster D, Schiller J, Arnold K (2002) Comparison of collagen dynamics in articular cartilage and isolated fibrils by solid-state NMR spectroscopy. Magn Reson Med 48:624–632

    Article  PubMed  CAS  Google Scholar 

  • Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Lee JH, Yun SY, Yoo JS, Jun CH, Chung KY, Suh H (2000) Reaction monitoring of succinylation of collagen with matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 14:2125–2128

    Article  PubMed  CAS  Google Scholar 

  • Koga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T, Sekiya I (2008) Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 333:207–215

    Article  PubMed  Google Scholar 

  • Kuo CK, Li WJ, Mauck RL, Tuan RS (2006) Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol 18:64–73

    Article  PubMed  Google Scholar 

  • Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ (2008) Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 22:351–384

    Article  PubMed  CAS  Google Scholar 

  • Nimptsch A, Schibur S, Schnabelrauch M, Fuchs B, Huster D, Schiller J (2009) Characterization of the quantitative relationship between signal-to-noise (S/N) ratio and sample amount on-target by MALDI-TOF MS: determination of chondroitin sulfate subsequent to enzymatic digestion. Anal Chim Acta 635:175–182

    Article  PubMed  CAS  Google Scholar 

  • Responte DJ, Natoli RM, Athanasiou KA (2007) Collagens of articular cartilage: structure, function, and importance in tissue engineering. Crit Rev Biomed Eng 35:363–411

    PubMed  Google Scholar 

  • Rohlfing A, Müthing J, Pohlentz G, Distler U, Peter-Katalinić J, Berkenkamp S, Dreisewerd K (2007) IR-MALDI-MS analysis of HPTLC-separated phospholipid mixtures directly from the TLC plate. Anal Chem 79:5793–5808

    Article  PubMed  CAS  Google Scholar 

  • Rucklidge GJ, Milne G, Bos KJ, Farquharson C, Robins SP (1997) Deer antler does not represent a typical endochondral growth system: immunoidentification of collagen type X but little collagen type II in growing antler tissue. Comp Biochem Physiol [B] 118:303–308

    Article  CAS  Google Scholar 

  • Schiller J, Naji L, Huster D, Kaufmann J, Arnold K (2001) 1H and 13C HR-MAS NMR investigations on native and enzymatically digested bovine nasal cartilage. MAGMA 13:19–27

    Article  PubMed  CAS  Google Scholar 

  • Schiller J, Fuchs B, Arnhold J, Arnold K (2003) Contribution of reactive oxygen species to cartilage degradation in rheumatic diseases: molecular pathways, diagnosis and potential therapeutic strategies. Curr Med Chem 10:2123–2145

    Article  PubMed  CAS  Google Scholar 

  • Schiller J, Fuchs B, Arnold K (2006) The molecular organization of polymers of cartilage: an overview of health and disease. Curr Org Chem 10:1771–1789

    Article  CAS  Google Scholar 

  • Schiller J, Süß R, Fuchs B, Müller M, Petković M, Zschörnig O, Waschipky H (2007) The suitability of different DHB isomers as matrices for the MALDI-TOF MS analysis of phospholipids: which isomer for what purpose? Eur Biophys J 36:517–527

    Article  PubMed  CAS  Google Scholar 

  • Schrohenloher RE, Ogle JD, Logan MA (1959) Two tripeptides from an enzymatic digest of collagen. J Biol Chem 234:58–61

    PubMed  CAS  Google Scholar 

  • Schulz RM, Bader A (2007) Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36:539–568

    Article  PubMed  CAS  Google Scholar 

  • Schulz R, Höhle S, Zernia G, Zscharnack M, Schiller J, Bader A, Arnold K, Huster D (2006) Analysis of extracellular matrix production in artificial cartilage constructs by histology, immuncytochemistry, mass spectrometry, and NMR spectroscopy. J Nanosci Nanotechnol 6:2368–2381

    Article  PubMed  CAS  Google Scholar 

  • Shroff R, Muck A, Svatos A (2007) Analysis of low molecular weight acids by negative mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 21:3295–3300

    Article  PubMed  CAS  Google Scholar 

  • Thiede B, Höhenwarter W, Krah A, Mattow J, Schmid M, Schmidt F, Jungblut PR (2005) Peptide mass fingerprinting. Methods 35:237–247

    Article  PubMed  CAS  Google Scholar 

  • Torchia DA, Hasson MA, Hascall VC (1977) Investigation of molecular motion of proteoglycans in cartilage by 13C magnetic resonance. J Biol Chem 252:3617–3625

    PubMed  CAS  Google Scholar 

  • Tsikas D (2010) Quantitative analysis of biomarkers, drugs and toxins in biological samples by immunoaffinity chromatography coupled to mass spectrometry or tandem mass spectrometry: a focused review of recent applications. J Chromatogr B 878:133–148

    Article  CAS  Google Scholar 

  • Zaia J, Hronowski XL, Costello CE (1997) In: Proceedings of the 45th ASMS Conference of the American Society for Mass Spectrometry and Allied Topics, Palm Springs, Calif., USA, June 1–5, 1997. ASMS, Santa Fe, p 367

  • Zhang G, Sun A, Li W, Liu T, Su Z (2006) Mass spectrometric analysis of enzymatic digestion of denatured collagen for identification of collagen type. J Chromatogr A 1114:274–277

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schiller.

Additional information

Ariane Nimptsch and Stephanie Schibur contributed equally to this work.

This work was supported by the German Research Council (DFG Schi 476/7-1, Hu 720/7-1, and TRR 67 projects A2/A6).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimptsch, A., Schibur, S., Ihling, C. et al. Quantitative analysis of denatured collagen by collagenase digestion and subsequent MALDI-TOF mass spectrometry. Cell Tissue Res 343, 605–617 (2011). https://doi.org/10.1007/s00441-010-1113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1113-2

Keywords

Navigation