Cell and Tissue Research

, Volume 343, Issue 2, pp 429–444 | Cite as

Expression of lymphatic endothelium-specific hyaluronan receptor LYVE-1 in the developing mouse kidney

  • Hyun-Wook Lee
  • Yan-Xia Qin
  • Yu-Mi Kim
  • Eun-Young Park
  • Jin-Sun Hwang
  • Guan-Hua Huo
  • Chul-Woo Yang
  • Wan-Young Kim
  • Jin KimEmail author
Regular Article


Our knowledge of the embryonic development of the lymphatic vessels within the kidney is limited. The aim of this study was to establish the time of appearance and the distribution of intra-renal lymphatic vessels in the developing mouse kidney by using the lymphatic marker, LYVE-1. Kidneys from embryonic day 12 (E12) to E18, from neonates at post-natal day 1 (P1) to P21, and from adults were studied. In the adult mouse kidney, LYVE-1 was expressed mainly in the lymphatic endothelial cells (LECs) and in a subset of endothelial cells in the glomerular capillaries. However, in the developing mouse kidney, LYVE-1 was also expressed transiently in F4/80+/CD11b immature macrophages/dendritic cells and in the developing renal vein. LYVE-1+ lymphatic vessels connected with extra-renal lymphatics were detected in the kidney at E13. F4/80+/CD11b/LYVE-1+ immature macrophages/dendritic cells appeared prior to the appearance of LYVE-1+ renal lymphatic vessels and were closely intermingled or even formed part of the lymphatic vascular wall. Prox1 was expressed only in the LYVE-1+ LECs from fetus to adult-hood, but not in LYVE-1+ endothelial cells of the developing renal vein and macrophages/dendritic cells. Thus, lymphatic vessels of the kidney might originate by extension of extra-renal lymphatics through an active branching process possibly associated with F4/80+/CD11b/LYVE-1+ macrophages/dendritic cells.


LYVE-1 Lymphangiogenesis  Kidney Mouse (C57BL/6) 



The authors are grateful to Dr. Craig C. Tisher and Kirsten M. Madsen (University of Florida) for advice during this study and also thank Hong-Lim Kim for technical assistance.

Supplementary material

441_2010_1098_Fig11_ESM.gif (73 kb)
Fig. S1

(GIF 72 kb)

441_2010_1098_MOESM1_ESM.tif (654 kb)
High resolution image (TIFF 654 kb)


  1. Al-Rawi MA, Mansel RE, Jiang WG (2005) Molecular and cellular mechanisms of lymphangiogenesis. Eur J Surg Oncol 31:117–121CrossRefPubMedGoogle Scholar
  2. Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 38:946–953CrossRefGoogle Scholar
  3. Attout T, Hoerauf A, Dénécé G, Debrah AY, Marfo-Debrekyei Y, Boussinesq M, Wanji S, Martinez V, Mand S, Adjei O, Bain O, Specht S, Martin C (2009) Lymphatic vascularisation and involvement of Lyve-1+ macrophages in the human onchocerca nodule. PLoS ONE 4:e8234CrossRefPubMedGoogle Scholar
  4. Austyn JM, Hankins DF, Larsen CP, Morris PJ, Rao AS, Roake JA (1994) Isolation and characterization of dendritic cells from mouse heart and kidney. J Immunol 152:2401–2410PubMedGoogle Scholar
  5. Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M, Jackson DG (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144:789–801CrossRefPubMedGoogle Scholar
  6. Beasley NJ, Prevo R, Banerji S, Leek RD, Moore J, Van Tranppen P, Cox G, Harris AL, Jackson DG (2002) Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Res 62:1315–1320PubMedGoogle Scholar
  7. Bixel MG, Adams RH (2008) Master and commander: continued expression of Prox1 prevents the dedifferentiation of lymphatic endothelial cells. Genes Dev 22:3282–3291CrossRefGoogle Scholar
  8. Bouwens L, DeBlay E (1996) Islet morphogenesis and stem cell markers in rat pancreas. J Histochem Cytochem 44:947–951PubMedGoogle Scholar
  9. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Dana MR, Wiegand SJ, Streilein JW (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113:1040–1050PubMedGoogle Scholar
  10. Cuttino JT Jr, Jennette JC, Clark RL, Kwock L (1985) Renal medullary lymphatics: microrediographic, light, and electron microscopic studies in pigs. Lymphology 18:24–30PubMedGoogle Scholar
  11. Gale NW, Prevo R, Espinosa J, Ferguson DJ, Dominguez MG, Yancopoulod GD, Thurston G, Jackson DG (2007) Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol Cell Biol 27:595–604CrossRefPubMedGoogle Scholar
  12. Grant AJ, Goddard S, Ahmed-Choudhury J, Reynolds G, Jackson DG, Briskin M, Wu L, Hübscher SG, Adams DH (2002) Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease. Am J Pathol 160:1445–1455CrossRefPubMedGoogle Scholar
  13. Hamrah P, Chen L, Cursiefen C, Zhang Q, Joyce NC, Dana MR (2004) Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) on monocytic bone marrow-derived cells in the conjunctiva. Exp Eye Res 79:553–561CrossRefPubMedGoogle Scholar
  14. Harvey NL, Oliver G (2004) Choose your fate: artery, vein or lymphatic vessel? Curr Opin Genet Dev 14:499–505CrossRefPubMedGoogle Scholar
  15. He Y, Rajantie I, Ilmonen M, Makinen T, Karkkainen MJ, Haiko P, Salven P, Alitalo K (2004) Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 64:3737–3740CrossRefPubMedGoogle Scholar
  16. Hirakawa S, Detmar M (2004) New insights into the biology and pathology of the cutaneous lymphatic system. J Dermatol Sci 35:1–8CrossRefPubMedGoogle Scholar
  17. Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162:575–586CrossRefPubMedGoogle Scholar
  18. Hogg CM, Reid O, Scothorne RJ (1982) Studies on hemolymph nodes. III. Renal lymph as a major source of erythrocytes in the renal hemolymph node of the rat. J Anat 135:291–299PubMedGoogle Scholar
  19. Holmes MJ, O’Morchoe PJ, O’Morchoe CC (1977) Morphology of the intrarenal lymphatic system. Capsular and hilar communications. Am J Anat 149:333–351CrossRefPubMedGoogle Scholar
  20. Jackson DG (2004) Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS 112:526–538CrossRefPubMedGoogle Scholar
  21. Jackson DG, Prevo R, Clasper S, Banerji S (2001) LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol 22:317–321CrossRefPubMedGoogle Scholar
  22. Jeon BH, Jang C, Han J, Kataru RP, Piao L, Jung K, Cha HJ, Schwendener RA, Jang KY, Kim KS, Alitalo K, Koh GY (2008) Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b+ macrophages in advanced ovarian cancer. Cancer Res 68:1100–1109CrossRefPubMedGoogle Scholar
  23. Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL, Frase SL, Oliver G (2008) Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev 22:3232–3235CrossRefGoogle Scholar
  24. Jurisic G, Detmar M (2009) Lymphatic endothelium in health and disease. Cell Tissue Res 335:97–108CrossRefPubMedGoogle Scholar
  25. Kerjaschki D (2005a) Lymphatic neoangiogenesis in human neoplasia and transplantation as experiments of nature. Kidney Int 68:1967–1968Google Scholar
  26. Kerjaschki D (2005b) The crucial role of macrophages in lymphangiogenesis. J Clin Invest 115:2316–2319CrossRefPubMedGoogle Scholar
  27. Kerjaschki D (2007) How to control lymphangiogenesis: a novel role for rapamycin. Kidney Int 71:717–719CrossRefPubMedGoogle Scholar
  28. Kim J, Kim WY, Han KH, Knepper MA, Nielsen S, Madsen KM (1999) Developmental expression of aquaporin 1 in the rat renal vasculature. Am J Physiol Renal Physiol 276:F498–F509Google Scholar
  29. Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D (2001) Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 194:797–808CrossRefPubMedGoogle Scholar
  30. Kubo H, Fujiwara T, Jussila L, Hashi H, Ogawa M, Shimizu K, Awane M, Sakai Y, Takabayashi A, Alitalo K, Yamaoka Y, Nishikawa SI (2000) Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 96:546–553PubMedGoogle Scholar
  31. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595CrossRefPubMedGoogle Scholar
  32. Maby-El Hajjami H, Petrova TV (2008) Developmental and pathological lymphangiogenesis: from models to human disease. Histochem Cell Biol 130:1063–1078CrossRefPubMedGoogle Scholar
  33. Madsen KM, Nielsen S, Tisher CC (2008) Anatomy of the kidney. In: Brenner BM (ed) Brenner and Rector’s The kidney, vol 1, Lymphatics. Saunders Elsevier, Philadelphia, pp 25–90Google Scholar
  34. Maruyama K, Li M, Cursiefen C, Jackson DG, Keino H, Tomita M, Rooijen NV, Takenaka H, D’Amore PA, Stein-Streilein J, Losordo DW, Streilein JW (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115:2363–2372CrossRefPubMedGoogle Scholar
  35. Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D’Amore PA (2007) Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 170:1178–1191CrossRefPubMedGoogle Scholar
  36. Matsui K, Nagy-Bojarsky K, Laakkonen P, Krieger S, Mechtler K, Uchida S, Geleff S, Kang DH, Johnson RJ, Kerjaschki D (2003) Lymphatic microvessels in the rat remnant kidney model of renal fibrosis: aminopeptidase P and podoplanin are discriminatory markers for endothelial cells of blood and lymphatic vessels. J Am Soc Nephrol 14:1981–1989CrossRefPubMedGoogle Scholar
  37. Mouta Carreira C, Nasser SM, Tomaso E di, Padera TP, Boucher Y, Tomarev SI, Jain RK (2001) LYVE-1 is not restricted to the lymph vessels expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res 61:8079–8084PubMedGoogle Scholar
  38. Niki T, Iba S, Yamada T, Matsuno Y, Enholm B, Hirohashi S (2001) Expression of vascular endothelial growth factor receptor 3 in blood and lymphatic vessels of lung adenocarcinoma. J Pathol 193:450–457CrossRefPubMedGoogle Scholar
  39. Oliver G (2004) Lymphatic vasculature development. Nat Rev Immunol 4:35–45CrossRefPubMedGoogle Scholar
  40. Oliver G, Detmar M (2002) The rediscovery of lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16:773–784CrossRefPubMedGoogle Scholar
  41. Oliver G, Alitalo K (2005) The lymphatic vasculature: recent progress and paradigms. Annu Rev Cell Dev Biol 21:457–483CrossRefPubMedGoogle Scholar
  42. Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Yla-Herttuala S, Alitalo K (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcriptin factor. EMBO J 21:4593–4599CrossRefPubMedGoogle Scholar
  43. Prevo R, Banerji S, Ferguson D, Jackson DG (2001) Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 276:19420–19430CrossRefPubMedGoogle Scholar
  44. Pure E, Cuff CA (2001) A crucial role for CD44 in inflammation. Trends Mol Med 7:213–221CrossRefPubMedGoogle Scholar
  45. Rinda Soong T, Pathak AP, Asano H, Fox-Talbot K, Baldwin WM 3rd (2010) Lymphatic injury and regeneration in cardiac allografts. Transplantation 89:500–508CrossRefGoogle Scholar
  46. Rohn DA, Stewart RH, Elk JR, Laine GA, Drake RE (1996) Renal lymphatic function following venous pressure elevation. Lymphology 29:67–75PubMedGoogle Scholar
  47. Sabin FR (1909) The lymphatic system in human embryos, with a consideration of the morphology of the system as a whole. Am J Anat 9:43–91CrossRefGoogle Scholar
  48. Schacht V, Dandras SS, Johnson LA, Jackson DG, Hong YK, Detmar M (2005) Up-regulation of the lymphtic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 166:913–921CrossRefPubMedGoogle Scholar
  49. Schledzewski K, Falkowski M, Moldenhauer G, Metharom P, Kzhyshkowska J, Ganss R, Demory A, Falkowska-Hansen B, Kurzen H, Ugurel S, Geginat G, Arnold B, Goerdt S (2006) Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J Pathol 209:67–77CrossRefPubMedGoogle Scholar
  50. Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161:947–956CrossRefPubMedGoogle Scholar
  51. Schroedl F, Brehmer A, Neuhuber WL, Kruse FE, May CA, Cursiefen C (2008) The normal human choroid is endowed with a significant number of lymphatic vessel endothelial hyaluronate receptor 1 (LYVE-1)-positive macrophages. Invest Ophthalmol Vis Sci 49:5222–5229CrossRefPubMedGoogle Scholar
  52. Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161CrossRefPubMedGoogle Scholar
  53. Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S, Tsai MJ, Samokhvalov IM, Oliver G (2007) Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 21:2422-2432 (Comment in Lymphat Res Biol 5:275–276)CrossRefPubMedGoogle Scholar
  54. Tammela T, Petrova TV, Alitalo K (2005) Molecular lymphangiogenesis: new players. Trends Cell Biol 15:434–441CrossRefPubMedGoogle Scholar
  55. Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–778CrossRefPubMedGoogle Scholar
  56. Wigle JT, Harvey N, Detmar M, Lagurina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21:1505–1513CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hyun-Wook Lee
    • 1
  • Yan-Xia Qin
    • 3
  • Yu-Mi Kim
    • 1
  • Eun-Young Park
    • 1
  • Jin-Sun Hwang
    • 1
  • Guan-Hua Huo
    • 3
  • Chul-Woo Yang
    • 2
  • Wan-Young Kim
    • 1
  • Jin Kim
    • 1
    Email author
  1. 1.Department of Anatomy and MRC for Cell Death Disease Research Center, College of MedicineThe Catholic University of KoreaSeoulKorea
  2. 2.Department of Internal Medicine and Cell Death Disease Research Center, College of MedicineThe Catholic University of KoreaSeoulKorea
  3. 3.Department of Histology and EmbryologyBinzhou Medical UniversityBinzhouChina

Personalised recommendations