Advertisement

Cell and Tissue Research

, Volume 343, Issue 2, pp 319–330 | Cite as

Structural organization of the cerebral cortex of the neotropical lizard Tropidurus hispidus

  • Hugo de Carvalho Pimentel
  • José Ronaldo dos Santos
  • Matheus Macêdo-Lima
  • Fabrício Tavares Cunha de Almeida
  • Márcia Leite Santos
  • Assunción Molowny
  • Xavier Ponsoda
  • Carlos Lopez-Garcia
  • Murilo MarchioroEmail author
Regular Article

Abstract

Lizards belonging to the Tropiduridae family are “sit-and-wait” foragers, relying mainly on visual identification to catch prey that cross their visual fields. Little is known about the neurobiology of Tropiduridae lizards. We have used neurohistological techniques to study the structural organization of the telencephalon of the neotropical lizard Tropidurus hispidus, paying special attention to the cerebral cortex. As revealed by the Nissl technique and Golgi staining, the telencephalon of T. hispidus follows the squamate pattern, with some differences: the lateral cortex appears relatively atrophic, and most of the neuronal somata of the dorsal cortex are dispersed without forming a conspicuous cell layer. Golgi staining has revealed ten different neuronal types in the three cortical layers, based on somata shape and dendritic morphology: the granular (unipolar, bipolar, and multipolar), pyramidal (normal, inverted, open, bipyramidal, and horizontal), spherical horizontal, and fusiform neuronal types. The axon direction could be traced in five of the subtypes. We have also studied the distribution of zinc-enriched terminals in the telencephalon of T. hispidus by the Neo-Timm method. Some portions of the cortex, septum, striatum, and amygdaloid complex stain heavily, with patterns resembling those described for other lizard families. Thus, T. hispidus appears to be an interesting representative of the Tropiduridae family for further neurobiological comparative studies.

Keywords

Cerebral cortex Neuronal diversity Zinc Neotropical lizard Tropidurus hispidus (Squamata, Lacertilia) 

References

  1. Baird Day L, Crews D, Wilczynski W (1999) Relative medial and dorsal cortex volume in relation to foraging ecology in congeneric lizards. Brain Behav Evol 54:314–322CrossRefPubMedGoogle Scholar
  2. Bruce LL, Butler AB (1984) Telencephalic connections in lizards. I. Projections to the cortex. J Comp Neurol 229:585–601CrossRefPubMedGoogle Scholar
  3. De la Iglesia JAL, Lopez-Garcia C (1997a) A Golgi study of the principal projection neurons of the medial cortex of the lizard Podarcis hispanica. J Comp Neurol 385:528–564CrossRefGoogle Scholar
  4. De la Iglesia JAL, Lopez-Garcia C (1997b) A Golgi study of the short-axon interneurons of the cell layer and inner plexiform layer of the medial cortex of the lizard Podarcis hispanica. J Comp Neurol 385:565–598CrossRefGoogle Scholar
  5. De La Iglesia JAL, Martinez-Guijarro FJ, Lopez-Garcia C (1994) Neurons of the medial cortex outer plexiform layer of the lizard Podarcis hispanica: Golgi and immunocytochemical studies. J Comp Neurol 341:184–203CrossRefPubMedGoogle Scholar
  6. Greenberg N (1982) A forebrain atlas and stereotaxic technique for the lizard Anolis carolinensis. J Morphol 174:217–236CrossRefGoogle Scholar
  7. Hoogland PV, Vermeulen-Vanderzee E (1989) Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 285:289–303CrossRefPubMedGoogle Scholar
  8. Huey RB, Pianka ER (1981) Ecological consequences of foraging mode. Ecology 62:991–999CrossRefGoogle Scholar
  9. Kolodiuk MF, Ribeiro LB, Freire EMX (2010) Diet and foraging behavior of two species of Tropidurus (Squamata, Tropiduridade) in the Caatinga of northeastern Brazil. S Am J Herpetol 5:35–44CrossRefGoogle Scholar
  10. Ladage LD, Riggs BJ, Sinervo B, Pravosudov VV (2009) Dorsal cortex volume in male side-blotched lizards (Uta stansburiana) is associated with different space use strategies. Anim Behav 78:91–96CrossRefPubMedGoogle Scholar
  11. Lohman AHM, Mentink GM (1972) Some cortical connections of the tegu lizard (Tupinambis teguxin). Brain Res 45:325–344CrossRefPubMedGoogle Scholar
  12. Lohman AHM, Van Woerden-Verkley I (1978) Ascending connections to the forebrain in the tegu lizard. J Comp Neurol 182:555–594CrossRefPubMedGoogle Scholar
  13. Lopez-Garcia C, Martinez-Guijarro FJ, Berbel P, Garcia-Verdugo JM (1988) Long-spined polymorphic neurons of the medial cortex of lizards: a Golgi, Timm, and electron-microscopic study. J Comp Neurol 272:409–423CrossRefPubMedGoogle Scholar
  14. Lopez-Garcia C, Molowny A, Nacher J, Ponsoda X, Sancho-Bielsa F, Allonso-Llosa G (2002) The lizard cerebral cortex as a model to study neuronal regeneration. An Acad Bras Ciênc 74:85–104CrossRefPubMedGoogle Scholar
  15. Marchioro M, Nunes J-MAM, Ramalho AMR, Molowny A, Perez-Martinez E, Ponsoda X, Lopez-Garcia C (2005) Postnatal neurogenesis in the medial cortex of the tropical lizard Tropidurus hispidus. Neuroscience 134:407–413CrossRefPubMedGoogle Scholar
  16. Martinez-Guijarro FJ, Molowny A, Lopez-Garcia C (1987) Timm-staining intensity is correlated with the density of Timm-positive presynaptic structures in the cerebral cortex of lizards. Histochemistry 86:315–319CrossRefPubMedGoogle Scholar
  17. Martinez-Garcia F, Amiguet M, Schwerdtfeger WK, Olucha FE, Lorente MJ (1990) Interhemispheric connections trough the pallial commissures in the brain of Podarcis hispanica and Gallotia stehlinii (Reptilia, Lacertidae). J Morphol 205:17–31CrossRefGoogle Scholar
  18. Martinez-Guijarro FJ, Soriano E, Del Rio JA, Lopez-Garcia C (1991) Zinc-positive boutons in the cerebral cortex of lizards show glutamate immunoreactivity. J Neurocytol 20:834–843CrossRefPubMedGoogle Scholar
  19. Maurya RC, Srivastava UC (2006) Morphological diversity of the medial cortex neurons in the common Indian wall lizard, Hemidactylus flaviviridis. Natl Acad Sci Lett India 29:375–383Google Scholar
  20. Molowny A, Martinez-Catatayud J, Juan MJ, Martinez-Guijarro FJ, Lopez-Garcia C (1987) Zinc accumulation in the telencephalon of lizards. Histochemistry 86:311–314CrossRefPubMedGoogle Scholar
  21. Northcutt RG (1967) Architectonic studies of the telencephalon of Iguana iguana (Linnaeus). J Comp Neurol 130:109–147CrossRefPubMedGoogle Scholar
  22. Olucha F, Martinez-Garcia F, Poch L, Schwerdtfeger WK, Lopez-Garcia C (1988) Projections from the medial cortex in the brain of lizards: correlation of anterograde and retrograde transport of horseradish peroxidase with Timm staining. J Comp Neurol 276:469–480CrossRefPubMedGoogle Scholar
  23. Pasternak JF, Woolsey TA (1975) On the "selectivity" of the Golgi-Cox method. J Comp Neurol 160:307–312CrossRefPubMedGoogle Scholar
  24. Pérez-Clausell J (1988) Organization of zinc-containing terminal fields in the brain of the lizard Podarcis hispanica: a histochemical study. J Comp Neurol 267:153–171CrossRefPubMedGoogle Scholar
  25. Roth ED, Lutterschmidt WI, Wilson DA (2006) Relative medial and dorsal cortex volume in relation to sex differences in spatial ecology of a snake population. Brain Behav Evol 67:103–110CrossRefPubMedGoogle Scholar
  26. Shimono M, Tsuji N (1987) Study of the selectivity of the impregnation of neurons by the Golgi method. J Comp Neurol 259:122–130CrossRefPubMedGoogle Scholar
  27. Sluys M van, Rocha CFD, Vrcibradic D, Galdino CAB, Fontes AF (2004) Diet, activity and microhabitat use of two syntopic Tropidurus species (Lacertilia: Tropiduridae) in Minas Gerais, Brazil. J Herpetol 38:606–611CrossRefGoogle Scholar
  28. Smeets WJA, Hoogland PV, Lohman AHM (1986) A forebrain atlas of the lizard Gekko gecko. J Comp Neurol 254:1–19CrossRefPubMedGoogle Scholar
  29. Smeets WJA, Perez-Clausell J, Geneser FA (1989) The distribution of zinc in the forebrain and midbrain of Gekko gecko. A histochemical study. Anat Embryol 180:45–56CrossRefPubMedGoogle Scholar
  30. Spacek J (1989) Dynamics of the Golgi method: a time lapse study of the early stages of impregnation in single sections. J Neurocytol 18:27–38CrossRefPubMedGoogle Scholar
  31. Srivastava UC, Maurya RC, Chand P (2009) Cyto-architecture and neuronal types of the dorsomedial cerebral cortex of the common Indian wall lizard, Hemidactylus flaviviridis. Arch Ital Biol 147:21–35PubMedGoogle Scholar
  32. Vitt LJ, Zani PA, Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia. J Trop Ecol 12:81–101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hugo de Carvalho Pimentel
    • 1
  • José Ronaldo dos Santos
    • 2
  • Matheus Macêdo-Lima
    • 1
  • Fabrício Tavares Cunha de Almeida
    • 1
  • Márcia Leite Santos
    • 1
  • Assunción Molowny
    • 3
  • Xavier Ponsoda
    • 3
  • Carlos Lopez-Garcia
    • 3
  • Murilo Marchioro
    • 1
    Email author
  1. 1.Departamento de FisiologiaUniversidade Federal de SergipeSão CristóvãoBrasil
  2. 2.Departamento de FisiologiaUniversidade Federal do Rio Grande do NorteNatalBrasil
  3. 3.Labortorio de Neurobiologia Celular, Facultat de BiologiaUniversitat de ValenciaBurjassotSpain

Personalised recommendations