Advertisement

Cell and Tissue Research

, Volume 343, Issue 2, pp 379–387 | Cite as

High glucose induces enhanced expression of resistin in human U937 monocyte-like cell line by MAPK- and NF-kB-dependent mechanisms; the modulating effect of insulin

  • Daniela Stan
  • Manuela CalinEmail author
  • Ileana Manduteanu
  • Monica Pirvulescu
  • Ana-Maria Gan
  • Elena Dragomir Butoi
  • Viorel Simion
  • Maya Simionescu
Regular Article

Abstract

Resistin has emerged as a significant local and systemic regulatory cytokine involved in inflammation. In diabetic patients, the serum resistin level is increased, monocytes/macrophages being an important source of resistin production. We therefore hypothesize that high glucose concentrations (HG) regulate resistin expression in human monocytes. Our aim has been to uncover the potential signalling pathways involved in this process. We have also questioned whether insulin has an effect on the regulation of resistin expression induced by HG. Human monocytes (U937 cell line) were exposed to 25 mM glucose for 24 h and then resistin gene expression and protein levels were determined by reverse transcription with the polymerase chain reaction and Western blot assays. We found that (1) the gene expression and protein level of resistin were up-regulated by HG; (2) the inhibitors of the mitogen-activated protein kinases (MAPKs) p38 (SB203580), extracellular signal-regulated kinases 1/2 (ERK1/2; PD98059) and c-Jun N-terminal kinase (SP600125) and of the transcription factor nuclear factor kappa-B (PDTC) inhibited HG-induced resistin protein production and (3) insulin reduced HG-induced resistin expression via a mechanism independent of phosphatidylinositol 3-kinase (PI3K) or p38 and ERK1/2. Therefore, HG significantly increases resistin gene expression and protein production in the U937 cell line by mechanisms involving MAPKs and the transcription factor NF-kB, whereas insulin reduces its expression. This study adds new data concerning the molecular mechanisms involved in the pro-inflammatory effects of HG on human monocytes.

Keywords

Resistin High glucose Insulin Mitogen-activated protein kinases Nuclear factor kappa-B Signalling pathways Human monocytic cell line U937 

Notes

Acknowledgments

The authors are indebted to Gabriela Mesca for technical assistance.

References

  1. Aljada A, Saadeh R, Assian E, Ghanim H, Dandona P (2000) Insulin inhibits the expression of intercellular adhesion molecule-1 by human aortic endothelial cells through stimulation of nitric oxide. J Clin Endocrinol Metab 85:2572–2575CrossRefPubMedGoogle Scholar
  2. Aljada A, Ghanim H, Saadeh R, Dandona P (2001) Insulin inhibits NFkappaB and MCP-1 expression in human aortic endothelial cells. J Clin Endocrinol Metab 86:450–453CrossRefPubMedGoogle Scholar
  3. Banerjee RR, Lazar MA (2001) Dimerization of resistin and resistin-like molecules is determined by a single cysteine. J Biol Chem 276:25970–25973CrossRefPubMedGoogle Scholar
  4. Bostrom EA, Tarkowski A, Bokarewa M (2009) Resistin is stored in neutrophil granules being released upon challenge with inflammatory stimuli. Biochim Biophys Acta 1793:1894–1900CrossRefPubMedGoogle Scholar
  5. Burén J, Liu HX, Lauritz J, Eriksson JW (2003) High glucose and insulin in combination cause insulin receptor substrate-1 and -2 depletion and protein kinase B desensitisation in primary cultured rat adipocytes: possible implications for insulin resistance in type 2 diabetes. Eur J Endocrinol 148:157–167CrossRefPubMedGoogle Scholar
  6. Calabro P, Samudio I, Willerson JT, Yeh ET (2004) Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation 110:3335–3340CrossRefPubMedGoogle Scholar
  7. Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, Ahmad S (2001) Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 86:3257–3265CrossRefPubMedGoogle Scholar
  8. Degawa-Yamauchi M, Bovenkerk JE, Juliar BE, Watson W, Kerr K, Jones R, Zhu Q, Considine RV (2003) Serum resistin (FIZZ3) protein is increased in obese humans. J Clin Endocrinol Metab 88:5452–5455CrossRefPubMedGoogle Scholar
  9. Hasegawa G, Ohta M, Ichida Y, Obayashi H, Shigeta M, Yamasaki M, Fukui M, Yoshikawa T, Nakamura N (2005) Increased serum resistin levels in patients with type 2 diabetes are not linked with markers of insulin resistance and adiposity. Acta Diabetol 42:104–109CrossRefPubMedGoogle Scholar
  10. Haugen F, Jorgensen A, Drevon CA, Trayhurn P (2001) Inhibition by insulin of resistin gene expression in 3 T3-L1 adipocytes. FEBS Lett 507:105–108CrossRefPubMedGoogle Scholar
  11. Hui-Bing H, Migita K, Miyashita T, Maeda Y, Nakamura M, Yatsuhashi H, Ishibashi H, Eguchi K, Kimura H (2006) Relationship between serum resistin concentrations and inflammatory markers in patients with type 2 diabetes mellitus. Metabolism 55:1670–1673CrossRefPubMedGoogle Scholar
  12. Hung HF, Wang BW, Chang H, Shyu KG (2008) The molecular regulation of resistin expression in cultured vascular smooth muscle cells under hypoxia. J Hypertens 26:2349–2360CrossRefPubMedGoogle Scholar
  13. Igarashi M, Wakasaki H, Takahara N, Ishii H, Jiang ZY, Yamauchi T, Kuboki K, Meier M, Rhodes CJ, King GL (1999) Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Invest 103:185–195CrossRefPubMedGoogle Scholar
  14. Johansson L, Linnér A, Sundén-Cullberg J, Haggar A, Herwald H, Loré K, Treutiger CJ, Norrby-Teglund A (2009) Neutrophil-derived hyperresistinemia in severe acute streptococcal infections. J Immunol 183:4047–4054CrossRefPubMedGoogle Scholar
  15. Jung HS, Park KH, Cho YM, Chung SS, Cho HJ, Cho SY, Kim SJ, Kim SY, Lee HK, Park KS (2006) Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc Res 69:76–85CrossRefPubMedGoogle Scholar
  16. Kawanami D, Maemura K, Takeda N, Harada T, Nojiri T, Imai Y, Manabe I, Utsunomiya K, Nagai R (2004) Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun 314:415–419CrossRefPubMedGoogle Scholar
  17. Kawashima J, Tsuruzoe K, Motoshima H, Shirakami A, Sakai K, Hirashima Y, Toyonaga T, Araki E (2003) Insulin down-regulates resistin mRNA through the synthesis of protein(s) that could accelerate the degradation of resistin mRNA in 3 T3-L1 adipocytes. Diabetologia 46:231–240PubMedGoogle Scholar
  18. Kim KH, Lee K, Moon YS, Sul HS (2001) A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J Biol Chem 276:11252–11256CrossRefPubMedGoogle Scholar
  19. Kunnari AM, Savolainen ER, Ukkola OH, Kesäniemi YA, Jokela MA (2009) The expression of human resistin in different leucocyte lineages is modulated by LPS and TNFalpha. Regul Pept 157:57–63CrossRefPubMedGoogle Scholar
  20. Lazar M (2007) Resistin- and obesity-associated metabolic diseases. Horm Metab Res 39:710–716CrossRefPubMedGoogle Scholar
  21. Lehrke M, Reilly MP, Millington SC, Iqbal N, Rader DJ, Lazar MA (2004) An inflammatory cascade leading to hyperresistinemia in humans. PLoS Med 1:e45CrossRefPubMedGoogle Scholar
  22. Liu SF, Ye X, Malik AB (1999) Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents in vivo expression of proinflammatory genes. Circulation 100:1330–1337PubMedGoogle Scholar
  23. Lupattelli G, Marchesi S, Ronti T, Lombardini R, Bruscoli S, Bianchini R, Vaudo G, Riccardi C, Mannarino E (2007) Endothelial dysfunction in vivo is related to monocyte resistin mRNA expression. J Clin Pharm Ther 32:373–379CrossRefPubMedGoogle Scholar
  24. Manduteanu I, Voinea M, Antohe F, Dragomir E, Capraru M, Radulescu L, Simionescu M (2003) Effect of enoxaparin on high glucose-induced activation of endothelial cells. Eur J Pharmacol 477:269–276CrossRefPubMedGoogle Scholar
  25. Manduteanu I, Dragomir E, Calin M, Pirvulescu M, Gan AM, Stan D, Simionescu M (2009) Resistin up-regulates fractalkine expression in human endothelial cells: lack of additive effect with TNF-alpha. Biochem Biophys Res Commun 381:96–101CrossRefPubMedGoogle Scholar
  26. Manduteanu I, Pirvulescu M, Gan AM, Stan D, Simion V, Dragomir E, Calin M, Manea A, Simionescu M (2010) Similar effects of resistin and high glucose on P-selectin and fractalkine expression and monocyte adhesion in human endothelial cells. Biochem Biophys Res Commun 391:1443–1448CrossRefPubMedGoogle Scholar
  27. Nagaev I, Bokarewa M, Tarkowski A, Smith U (2006) Human resistin is a systemic immune-derived proinflammatory cytokine targeting both leukocytes and adipocytes. PLoS ONE 1:e31CrossRefPubMedGoogle Scholar
  28. Nigro J, Osman N, Dart AM, Little PJ (2006) Insulin resistance and atherosclerosis. Endocr Rev 27:242–259CrossRefPubMedGoogle Scholar
  29. On YK, Park HK, Hyon MS, Jeon ES (2007) Serum resistin as a biological marker for coronary artery disease and restenosis in type 2 diabetic patients. Circ J 71:868–873CrossRefPubMedGoogle Scholar
  30. Patel L, Buckels AC, Kinghorn IJ, Murdock PR, Holbrook JD, Plumpton C, Macphee CH, Smith SA (2003) Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun 300:472–476CrossRefPubMedGoogle Scholar
  31. Raghu P, Ghosh S, Soundarya K, Haseeb A, Aruna B, Ehtesham NZ (2004) Dimerization of human recombinant resistin involves covalent and noncovalent interactions. Biochem Biophys Res Commun 313:642–646CrossRefPubMedGoogle Scholar
  32. Rajala MW, Qi Y, Patel HR, Takahashi N, Banerjee R, Pajvani UB, Sinha MK, Gingerich RL, Scherer PE, Ahima RS (2004) Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes 53:1671–1679CrossRefPubMedGoogle Scholar
  33. Reaven GM (1998) Insulin resistance and human disease: a short history. J Basic Clin Physiol Pharmacol 9:387–406PubMedGoogle Scholar
  34. Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ (2005) Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 111:932–939CrossRefPubMedGoogle Scholar
  35. Shanmugam N, Reddy MA, Guha M, Natarajan R (2003) High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 52:1256–1264CrossRefPubMedGoogle Scholar
  36. Shojima N, Sakoda H, Ogihara T, Fujishiro M, Katagiri H, Anai M, Onishi Y, Ono H, Inukai K, Abe M, Fukushima Y, Kikuchi M, Oka Y, Asano T (2002) Humoral regulation of resistin expression in 3 T3-L1 and mouse adipose cells. Diabetes 51:1737–1744CrossRefPubMedGoogle Scholar
  37. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312CrossRefPubMedGoogle Scholar
  38. Takata Y, Osawa H, Kurata M, Kurokawa M, Yamauchi J, Ochi M, et al (2008) Hyperresistinemia is associated with coexistence of hypertension and type 2 diabetes. Hypertension 51:534–539CrossRefPubMedGoogle Scholar
  39. Tsiotra PC, Tsigos C, Anastasiou E, Yfanti E, Boutati E, Souvatzoglou E, Kyrou I, Raptis SA (2008) Peripheral mononuclear cell resistin mRNA expression is increased in type 2 diabetic women. Mediators Inflamm 2008:892–864CrossRefGoogle Scholar
  40. Verma S, Li SH, Wang CH, Fedak PW, Li RK, Weisel RD, Mickle DA (2003) Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 108:736–740CrossRefPubMedGoogle Scholar
  41. Xu W, Yu L, Zhou W, Luo M (2006) Resistin increases lipid accumulation and CD36 expression in human macrophages. Biochem Biophys Res Commun 351:376–382CrossRefPubMedGoogle Scholar
  42. Yang RZ, Huang Q, Xu A, McLenithan JC, Eisen JA, Shuldiner AR, Alkan S, Gong DW (2003) Comparative studies of resistin expression and phylogenomics in human and mouse. Biochem Biophys Res Commun 310:927–935CrossRefPubMedGoogle Scholar
  43. Youn BS, Yu KY, Park HJ, Lee NS, Min SS, Youn MY, Cho YM, Park YJ, Kim SY, Lee HK, Park KS (2004) Plasma resistin concentrations measured by enzyme-linked immunosorbent assay using a newly developed monoclonal antibody are elevated in individuals with type 2 diabetes mellitus. J Clin Endocrinol Metab 89:150–156CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Daniela Stan
    • 1
  • Manuela Calin
    • 2
    • 1
    Email author
  • Ileana Manduteanu
    • 1
  • Monica Pirvulescu
    • 1
  • Ana-Maria Gan
    • 1
  • Elena Dragomir Butoi
    • 1
  • Viorel Simion
    • 1
  • Maya Simionescu
    • 1
  1. 1.Institute of Cellular Biology and Pathology “N. Simionescu”BucharestRomania
  2. 2.Institute of Macromolecular Chemistry „Petru Poni”IasiRomania

Personalised recommendations