Skip to main content

Advertisement

Log in

Remodeling of the notochord during development of vertebral fusions in Atlantic salmon (Salmo salar)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Histological characterization of spinal fusions in Atlantic salmon (Salmo salar) has demonstrated shape alterations of vertebral body endplates, a reduced intervertebral space, and replacement of intervertebral cells by ectopic bone. However, the significance of the notochord during the fusion process has not been addressed. We have therefore investigated structural and cellular events in the notochord during the development of vertebral fusions. In order to induce vertebral fusions, Atlantic salmon were exposed to elevated temperatures from fertilization until they attained a size of 15 g. Based on results from radiography, intermediate and terminal stages of the fusion process were investigated by immunohistochemistry and real-time quantitative polymerase chain reaction. Examination of structural extracellular matrix proteins such as Perlecan, Aggrecan, Elastin, and Laminin revealed reduced activity and reorganization at early stages in the pathology. Staining for elastic fibers visualized a thinner elastic membrane surrounding the notochord of developing fusions, and immunohistochemistry for Perlecan showed that the notochordal sheath was stretched during fusion. These findings in the outer notochord correlated with the loss of Aggrecan- and Substance-P-positive signals and the further loss of vacuoles from the chordocytes in the central notochord. At more progressed stages of fusion, chordocytes condensed, and the expression of Aggrecan and Substance P reappeared. The hyperdense regions seem to be of importance for the formation of notochordal tissue into bone. Thus, the remodeling of notochord integrity by reduced elasticity, structural alterations, and cellular changes is probably involved in the development of vertebral fusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AF:

Anulus fibrosus

bp:

Base pair

Col2:

Collagen type 2

DAPI:

4,6-Diamidino-2-phenylindole

Ef1a:

Elongation factor 1

GBM:

Glomerular kidney membrane

IDD:

Intervertebral disc degeneration

IVD:

Intervertebral disk

PBS:

Phosphate-buffered saline

PG:

Proteoglycan

qPCR:

Quantitative polymerase chain reaction

RT:

Reverse transcription

runx2:

Runt-related transcription factor 2

Sox9:

(Sex determining region Y) box 9

SP:

Substance P

Zn12:

Zebrafish neuron marker 12

References

  • Adams DS, Keller R, Koehl MAR (1990) The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis. Development 110:115–130

    CAS  PubMed  Google Scholar 

  • Adamus MA, Dabrowski ZJ (2001) Effect of the neuropeptide substance P on the rat bone marrow-derived osteogenic cells in vitro. J Cell Biochem 81:499–506

    Article  CAS  PubMed  Google Scholar 

  • Amenta PS, Clark CC, Martinezhernandez A (1983) Deposition of fibronectin and laminin in the basement-membrane of the rat parietal yolk-sac—immunohistochemical and biosynthetic-studies. J Cell Biol 96:104–111

    Article  CAS  PubMed  Google Scholar 

  • Anderson MJ (1993) Differences in growth of neurons from normal and regenerated teleost spinal-cord in vitro. In Vitro Cell Dev Biol Anim 29:145–152

    Article  Google Scholar 

  • Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc—evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003

    Article  CAS  PubMed  Google Scholar 

  • Aviezer D, Hecht D, Safran M, Eisinger M, David G, Yayon A (1994) Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79:1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Baluk P, Bowden JJ, Lefevre PM, McDonald DM (1997) Upregulation of substance P receptors in angiogenesis associated with chronic airway inflammation in rats. Am J Physiol Lung Cell Mol Physiol 17:L565–L571

    Google Scholar 

  • Barnes PJ (2001) Neurogenic inflammation in the airways. Respir Physiol 125:145–154

    Article  CAS  PubMed  Google Scholar 

  • Bartels H, Potter IC (1998) Membrane structure of the cells of the lamprey notochord. J Electron Microsc 47:627–636

    Google Scholar 

  • Bjurholm A (1991) Neuroendocrine peptides in bone. Int Orthop 15:325–329

    Article  CAS  PubMed  Google Scholar 

  • Brown JC, Sasaki T, Gohring W, Yamada Y, Timpl R (1997) The C-terminal domain V of perlecan promotes beta 1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans. Eur J Biochem 250:39–46

    Article  CAS  PubMed  Google Scholar 

  • Caterson B, Flannery CR, Hughes CE, Little CB (2000) Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol 19:333–344

    Article  CAS  PubMed  Google Scholar 

  • Cleaver O, Krieg PA (2001) Notochord patterning of the endoderm. Dev Biol 234:1–12

    Article  CAS  PubMed  Google Scholar 

  • Couchman JR, Ljubimov AV (1989) Mammalian tissue distribution of a large heparin sulphate proteoglycan detected by monoclonal antibodies. Matrix 9:311–321

    CAS  PubMed  Google Scholar 

  • Deng WM, Ruohola-Baker H (2000) Laminin A is required for follicle cell-oocyte signaling that leads to establishment of the anterior-posterior axis in Drosophila. Curr Biol 10:683–686

    Article  CAS  PubMed  Google Scholar 

  • Dodge GR, Jimenez SA (2003) Glucosamine sulfate modulates the levels of aggrecan and matrix metalloproteinase-3 synthesized by cultured human osteoarthritis articular chondrocytes. Osteoarthritis Cartilage 11:424–432

    Article  CAS  PubMed  Google Scholar 

  • Domowicz M, Li H, Hennig A, Henry J, Vertel BM, Schwartz NB (1995) The biochemically and immunologically distinct CSPG of notochord is a product of the aggrecan gene. Dev Biol 171:655–664

    Article  CAS  PubMed  Google Scholar 

  • Fleming A, Keynes R, Tannahill D (2004) A central role for the notochord in vertebral patterning. Development 131:873–880

    Article  CAS  PubMed  Google Scholar 

  • Gjerde EAB, Karlsen TV, Reed RK (2003) Lowering of interstitial fluid pressure in rat trachea after substance P alone and in combination with calcitonin gene-related peptide. Acta Physiol Scand 178:123–127

    Article  CAS  PubMed  Google Scholar 

  • Glickman NS, Kimmel CB, Jones MA, Adams RJ (2003) Shaping the zebrafish notochord. Development 130:873–887

    Article  CAS  PubMed  Google Scholar 

  • Gorman KF, Breden F (2007) Teleosts as models for human vertebral stability and deformity. Comp Biochem Physiol C Toxicol Pharmacol 145:28–38

    Article  PubMed  Google Scholar 

  • Goto T, Yamaza T, Kido MA, Tanaka T (1998) Light- and electron-microscopic study of the distribution of axons containing substance P and the localization of neurokinin-1 receptor in bone. Cell Tissue Res 293:87–93

    Article  CAS  PubMed  Google Scholar 

  • Goto T, Nakao K, Gunjigake KK, Kido MA, Kobayashi S, Tanaka T (2007) Substance P stimulates late-stage rat osteoblastic bone formation through neurokinin-1 receptors. Neuropeptides 41:25–31

    Article  CAS  PubMed  Google Scholar 

  • Grotmol S, Nordvik K, Kryvi H, Totland GK (2005) A segmental pattern of alkaline phosphatase activity within the notochord coincides with the initial formation of the vertebral bodies. J Anat 206:427–436

    Article  CAS  PubMed  Google Scholar 

  • Grotmol S, Kryvi H, Keynes R, Krossoy C, Nordvik K, Totland GK (2006) Stepwise enforcement of the notochord and its intersection with the myoseptum: an evolutionary path leading to development of the vertebra? J Anat 209:339–357

    Article  PubMed  Google Scholar 

  • Hassell JR, Robey PG, Barrach HJ, Wilczek J, Rennard SI, Martin GR (1980) Isolation of a heparan sulfate-containing proteoglycan from basement-membrane. Proc Natl Acad Sci USA 77:4494–4498

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Madri JA, Yurchenco PD (1992) Endothelial-cells interact with the core protein of basement-membrane perlecan through beta-1 and beta-3 integrins—an adhesion modulated by glycosaminoglycan. J Cell Biol 119:945–959

    Article  CAS  PubMed  Google Scholar 

  • Hayes AJ, Benjamin M, Ralphs JR (2001) Extracellular matrix in development of the intervertebral disc. Matrix Biol 20:107–121

    Article  CAS  PubMed  Google Scholar 

  • Hogan BLM, Cooper AR, Kurkinen M (1980) Incorporation into Reicherts membrane of laminin-like extracellular proteins synthesized by parietal endoderm cells of the mouse embryo. Dev Biol 80:289–300

    Article  CAS  PubMed  Google Scholar 

  • Hökfelt T, Kellerth JO, Nilsson G, Pernow B (1975) Substance-P—localization in central nervous-system and in some primary sensory neurons. Science 190:889–890

    Article  PubMed  Google Scholar 

  • Holmqvist BI, Ekstrom P (1991) Galanin-like immunoreactivity in the brain of teleosts—distribution and relation to substance-P, vasotocin, and isotocin in the Atlantic salmon (Salmo salar). J Comp Neurol 306:361–381

    Article  CAS  PubMed  Google Scholar 

  • Hukkanen M, Konttinen YT, Rees RG, Gibson SJ, Santavirta S, Polak JM (1992) Innervation of bone from healthy and arthritic rats by substance-P and calcitonin gene related peptide containing sensory fibers. J Rheumatol 19:1252–1259

    CAS  PubMed  Google Scholar 

  • Hunter CJ, Matyas JR, Duncan NA (2003) The three-dimensional architecture of the notochordal nucleus pulposus: novel observations on cell structures in the canine intervertebral disc. J Anat 202:279–291

    Article  PubMed  Google Scholar 

  • Ida-Yonemochi H, Ohshiro K, Swelam W, Metwaly H, Saku T (2005) Perlecan, a basement membrane-type heparan sulfate proteoglycan, in the enamel organ: its intraepithelial localization in the stellate reticulum. J Histochem Cytochem 53:763–772

    Article  CAS  PubMed  Google Scholar 

  • Kanemoto M, Hukuda S, Komiya Y, Katsuura A, Nishioka J (1996) Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 in human intervertebral discs. Spine 21:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kauppila LI (1995) Ingrowth of blood-vessels in disc degeneration—angiographic and histological studies of cadaveric spines. J Bone Joint Surg Am 77A:26–31

    Google Scholar 

  • Kim JH, Deasy BM, Seo HY, Studer RK, Vo NV, Georgescu HI, Sowa GA, Kang JD (2009) Differentiation of intervertebral notochordal cells through live automated cell imaging system in vitro. Spine 34:2486–2493

    Article  PubMed  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic-development of the zebrafish. Dev Dyn 203:253–310

    CAS  PubMed  Google Scholar 

  • Koehl MAR, Quillin KJ, Pell CA (2000) Mechanical design of fiber-wound hydraulic skeletons: the stiffening and straightening of embryonic notochords. Am Zool 40:28–41

    Article  Google Scholar 

  • Kuraishi Y, Hirota N, Sato Y, Hino Y, Satoh M, Takagi H (1985) Evidence that substance-P and somatostatin transmit separate information related to pain in the spinal dorsal horn. Brain Res 325:294–298

    Article  CAS  PubMed  Google Scholar 

  • Kvellestad A, Hoie S, Thorud K, Torud B, Lyngoy A (2000) Platyspondyly and shortness of vertebral column in farmed Atlantic salmon Salmo salar in Norway—description and interpretation of pathologic changes. Dis Aquat Organ 39:97–108

    Article  CAS  PubMed  Google Scholar 

  • Lee EC, Lotz MM, Steele GD, Mercurio AM (1992) The integrin alpha-6-beta-4 is a laminin receptor. J Cell Biol 117:671–678

    Article  CAS  PubMed  Google Scholar 

  • Linsenma TF, Trelstad RL, Gross J (1973) Collagen of chick embryonic notochord. Biochem Biophys Res Commun 53:39–45

    Article  Google Scholar 

  • Lotz JC (2004) Animal models of intervertebral disc degeneration—lessons learned. Spine 29:2742–2750

    Article  PubMed  Google Scholar 

  • Lundberg JM, Brodin E, Hua XY, Saria A (1984) Vascular-permeability changes and smooth-muscle contraction in relation to capsaicin-sensitive substance-P afferents in the guinea-pig. Acta Physiol Scand 120:217–227

    Article  CAS  PubMed  Google Scholar 

  • McDonald DM (1988) Neurogenic inflammation in the rat trachea. 1. Changes in venules, leukocytes and epithelial-cells. J Neurocytol 17:583–603

    Article  CAS  PubMed  Google Scholar 

  • Melrose J, Roberts S, Smith S, Menage J, Ghosh P (2002) Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine 27:1278–1285

    Article  PubMed  Google Scholar 

  • Metcalfe WK, Myers PZ, Trevarrow B, Bass MB, Kimmel CB (1990) Primary neurons that express the L2/Hnk-1 carbohydrate during early development in the zebrafish. Development 110:491–504

    CAS  PubMed  Google Scholar 

  • Millward-Sadler SJ, Mackenzie A, Wright MO, Lee HS, Elliott K, Gerrard L, Fiskerstrand CE, Salter DM, Quinn JP (2003) Tachykinin expression in cartilage and function in human articular chondrocyte mechanotransduction. Arthritis Rheum 48:146–156

    Article  CAS  PubMed  Google Scholar 

  • Miner JH, Li C, Mudd JL, Go G, Sutherland AE (2004) Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development 131:2247–2256

    Article  CAS  PubMed  Google Scholar 

  • Morita H, Yoshimura A, Inui K, Lodeura T, Watanabe H, Wang L, Soininen R, Tryggvason K (2005) Heparan sulfate of perlecan is involved in glomerular filtration. J Am Soc Nephrol 16:1703–1710

    Article  CAS  PubMed  Google Scholar 

  • Nachemso A, Lewin T, Maroudas A, Freeman MAR (1970) In-vitro diffusion of dye through end-plates and annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand 41:589–596

    Article  Google Scholar 

  • Nordvik K, Kryvi H, Totland GK, Grotmol S (2005) The salmon vertebral body develops through mineralization of two preformed tissues that are encompassed by two layers of bone. J Anat 206:103–114

    Article  PubMed  Google Scholar 

  • Oegema TR (2002) The role of disc cell heterogeneity in determining disc biochemistry: a speculation. Biochem Soc Trans 30:839–844

    Article  CAS  PubMed  Google Scholar 

  • Olsvik PA, Lie KK, Jordal AEO, Nilsen TO, Hordvik I (2005) Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol 6:21

    Article  PubMed  Google Scholar 

  • Parsons MJ, Pollard SM, Saude L, Feldman B, Coutinho P, Hirst EMA, Stemple DL (2002) Zebrafish mutants identify an essential role for laminins in notochord formation. Development 129:3137–3146

    CAS  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:1

    Article  Google Scholar 

  • Roberts S, Menage J, Urban JPG (1989) Biochemical and structural properties of the cartilage endplate and its relation to the intervertebral disc. Spine 14:166–174

    Article  CAS  PubMed  Google Scholar 

  • Sandell LJ (1994) In-situ expression of collagen and proteoglycan genes in notochord and during skeletal development and growth. Microsc Res Tech 28:470–482

    Article  CAS  PubMed  Google Scholar 

  • Shively JE, Conrad HE (1976) Nearest neighbour analysis of heparin: identification and quantitation of the products formed by selective depolymerization procedures. Biochemistry 15:3943–3950

    Article  CAS  PubMed  Google Scholar 

  • Sivan SS, Tsitron E, Wachtel E, Roughley PJ, Sakkee N, Ham F van der, DeGroot J, Roberts S, Maroudas A (2006) Aggrecan turnover in human intervertebral disc as determined by the racemization of aspartic acid. J Biol Chem 281:13009–13014

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Whitelock JM, Iozzo RV, Little CB, Melrose J (2009) Topographical variation in the distributions of versican, aggrecan and perlecan in the foetal human spine reflects their diverse functional roles in spinal development. Histochem Cell Biol 132:491–503

    Article  CAS  PubMed  Google Scholar 

  • Smyth N, Vatansever HS, Murray P, Meyer M, Frie C, Paulsson M, Edgar D (1999) Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 144:151–160

    Article  CAS  PubMed  Google Scholar 

  • Sonnenberg A, Calafat J, Janssen H, Daams H, Vanderraaijhelmer LMH, Falcioni R, Kennel SJ, Aplin JD, Baker J, Loizidou M, Garrod D (1991) Integrin-alpha-6-beta-4 complex is located in hemidesmosomes, suggesting a major role in epidermal-cell basement-membrane adhesion. J Cell Biol 113:907–917

    Article  CAS  PubMed  Google Scholar 

  • Streuli CH, Schmidhauser C, Bailey N, Yurchenco P, Skubitz APN, Roskelley C, Bissell MJ (1995) Laminin mediates tissue-specific gene-expression in mammary epithelia. J Cell Biol 129:591–603

    Article  CAS  PubMed  Google Scholar 

  • Sun HB, Chen JC, Liu Q, Guo MF (2010) Substance P stimulates differentiation of mice osteoblast through up-regulating osterix expression. J Traumatol 13:46–50

    CAS  Google Scholar 

  • Sundarraj N, Fite D, Ledbetter S, Chakravarti S, Hassell JR (1995) Perlecan is a component of cartilage matrix and promotes chondrocyte attachment. J Cell Sci 108:2663–2672

    CAS  PubMed  Google Scholar 

  • Takaishi H, Nemoto O, Shiota M, Kikuchi T, Yamada H, Yamagishi M, Yabe Y (1997) Type-II collagen gene expression is transiently upregulated in experimentally induced degeneration of rabbit intervertebral disc. J Orthop Res 15:528–538

    Article  CAS  PubMed  Google Scholar 

  • Tarakçý BG, Köprücü SS (2002) Regulatory peptides in gastroenteropancreatic endocrine cells of the rainbow trout (Oncorhynchus mykiss Walbaum, 1792). J Fish Aquat Sci 19:157–162

    Google Scholar 

  • Timpl R (1996) Macromolecular organization of basement membranes. Curr Opin Cell Biol 8:618–624

    Article  CAS  PubMed  Google Scholar 

  • Tingbø MG, Kolset SO, Ofstad R, Enersen G, Hannesson KO (2006) Identification and distribution of heparan sulfate proteoglycans in the white muscle of Atlantic cod (Gadus morhua) and spotted wolffish (Anarhichas minor). Comp Biochem Physiol [B] 143:441–452

    Article  Google Scholar 

  • Urban JPG, Mcmullin JF (1985) Swelling pressure of the intervertebral disk—influence of proteoglycan and collagen contents. Biorheology 22:145–157

    CAS  PubMed  Google Scholar 

  • Urban JPG, Roberts S (2003) Degeneration of the intervertebral disc. Arthritis Res Ther 5:120–130

    Article  PubMed  Google Scholar 

  • Urban JPG, Smith S, Fairbank JCT (2004) Nutrition of the intervertebral disc. Spine 29:2700–2709

    Article  PubMed  Google Scholar 

  • Vincent M, Duband JL, Thiery JP (1983) A cell-surface determinant expressed early on migrating avian neural crest cells. Dev Brain Res 9:235–238

    Article  Google Scholar 

  • Witten PE, Rosenthal H, Hall BK (2002) The kype of male Atlantic salmon (Salmo salar): restart of bone development in adult animals. Integr Comp Biol 42:1337

    Google Scholar 

  • Witten PE, Gil-Martens L, Hall BK, Huysseune A, Obach A (2005) Compressed vertebrae in Atlantic salmon Salmo salar: evidence for metaplastic chondrogenesis as a skeletogenic response late in ontogeny. Dis Aquat Organ 64:237–246

    Article  PubMed  Google Scholar 

  • Witten PE, Obach A, Huysseune A, Baeverfjord G (2006) Vertebrae fusion in Atlantic salmon (Salmo salar): development, aggravation and pathways of containment. Aquaculture 258:164–172

    Article  Google Scholar 

  • Yasuma T, Arai K, Yamauchi Y (1993) The histology of lumbar intervertebral disc herniation—the significance of small blood-vessels in the extruded tissue. Spine 18:1761–1765

    Article  CAS  PubMed  Google Scholar 

  • Ytteborg E, Baeverfjord G, Hjelde K, Torgersen J, Takle H (2010a) Molecular pathology of vertebral deformities in hyperthermic Atlantic salmon (Salmo salar). BMC Physiol 10:12

    Article  PubMed  Google Scholar 

  • Ytteborg E, Torgersen J, Baeverfjord G, Hjelde K, Takle H (2010b) Morphological and molecular characterization of developing vertebral fusions using a teleost model. BMC Physiol (in press)

  • Yu J, Fairbank JCT, Roberts S, Urban JPG (2005) The elastic fiber network of the anulus fibrosus of the normal and scoliotic human intervertebral disc. Spine 30:1815–1820

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Takle.

Additional information

This study was supported by the Norwegian Research Council (project no. 172483) and EU (COLL-CT-2005-012451, FINE FISH).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Western blot of (a) Zn12 (standard in lane 1 Novex Sharp Pre-Stained Protein Standards, Invitrogen), (b) Aggrecan, and (c) Perlecan. (JPEG 5925 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ytteborg, E., Torgersen, J.S., Pedersen, M.E. et al. Remodeling of the notochord during development of vertebral fusions in Atlantic salmon (Salmo salar). Cell Tissue Res 342, 363–376 (2010). https://doi.org/10.1007/s00441-010-1069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1069-2

Keywords

Navigation