Skip to main content
Log in

Effect of 6-hydroxydopamine (6-OHDA) on proliferation of glial cells in the rat cortex and striatum: evidence for de-differentiation of resident astrocytes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Reactive astrogliosis is the universal response to any brain insult. It is characterized by cellular hypertrophy, up-regulation of the astrocyte marker glial fibrillary acidic protein (GFAP), and proliferation. The source of these proliferating cells is under intense debate. Progenitor cells derived from the subventricular zone (SVZ), cells positive for chondroitin sulfate proteoglycan (NG2+), and de-differentiated astrocytes have been proposed as the origin of proliferating cells following injury. We have analyzed the effect of intraventricular-applied 6-hydroxydopamine (6-OHDA) on the proliferation and morphology of astrocytes in rat cortex and striatum by means of immunohistochemistry and confocal laser microscopy. At 4 days post-lesion, GFAP expression increased markedly. A subpopulation of the GFAP+ cells co-expressed Ki-67, indicating that these cells were proliferating. To investigate whether these cells (1) arose from migrating SVZ progenitor cells, (2) derived from NG2+ progenitor cells, or (3) de-differentiated from resident astrocytes, we studied the expression of the migration marker doublecortin (Dcx), the oligodendrocyte progenitor marker NG2, and the progenitor markers Nestin and Pax6. The proliferating Ki-67+ cells co-expressed Nestin and Pax6, whereas no co-expression of Ki-67 with NG2 or the migration marker Dcx was observed. Thus, resident astrocytes de-differentiate, in response to the intraventricular application of 6-OHDA, to a phenotype resembling radial glia cells, which represent transient astrocyte precursors during development. An understanding of the mechanisms of the de-differentiation of mature astrocytes might be useful for designing new approaches to cell therapy in neurodegenerative diseases such as Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

6-OHDA:

6-hydroxydopamine

ABC:

avitin-biotin peroxidase complex

DAB:

3,3’-diaminobenzidine

Dcx:

doublecortin

GFAP:

glial fibrillary acidic protein

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NG2:

chondroitin sulfate proteoglycan

Pax6:

paired box gene 6

PBS:

phosphate-buffered saline

SVZ:

subventricular zone

TH:

tyrosine hydroxylase

References

  • Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain.Glia 16:368–382

    Google Scholar 

  • Amat JA, Ishiguro H, Nakamura K, Norton WT (1996) Phenotypic diversity and kinetics of proliferating microglia and astrocytes following cortical stab wounds. Glia 16:368–382

    Article  CAS  PubMed  Google Scholar 

  • Aponso PM, Faull RLM, Connor B (2008) Increased progenitor cell proliferation and astrogenesis in the partial progressive 6-hydroxydopamine model of Parkinson’s disease. Neuroscience 151:1142–1153

    Article  CAS  PubMed  Google Scholar 

  • Badaut J, Brunet JF, Petit JM, Guerin CF, Magistretti PJ, Regli L (2008) Induction of brain aquaporin 9 (AQP9) in catecholaminergic neurons in diabetic rats. Brain Res 1188:17–24

    Article  CAS  PubMed  Google Scholar 

  • Baker SA, Baker KA, Hagg T (2004) Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 20:575–579

    Article  PubMed  Google Scholar 

  • Berninger B, Hack MA, Götz M (2006)Neural stem cells: on where they hide, in which disguise, and how we may lure them out.Handb Exp Pharmacol 174:319-360

    Article  PubMed  Google Scholar 

  • Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, Götz M (2007) Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 27:8654–8664

    Article  CAS  PubMed  Google Scholar 

  • Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    Article  CAS  PubMed  Google Scholar 

  • Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, Mori T, Götz M (2008) Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci USA 105:3581–3586

    Article  CAS  PubMed  Google Scholar 

  • Buffo A, Rolando C, Ceruti S (2010) Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol 79:77–89

    Article  CAS  PubMed  Google Scholar 

  • Burns KA, Murphy B, Danzer SC, Kuan C-Y (2009) Developmental and post-injury cortical gliogenesis: a genetic fate-mapping study with Nestin-CreER mice. Glia 57:1115–1129

    Article  PubMed  Google Scholar 

  • Buttitta LA, Edgar BA (2007) Mechanisms controlling cell cycle exit upon terminal differentiation. Curr Opin Cell Biol 19:697–704

    Article  CAS  PubMed  Google Scholar 

  • Chadi G, Gomide VC (2004) FGF-2 and S100[beta] immunoreactivities increase in reactive astrocytes, but not in microglia, in ascending dopamine pathways following a striatal 6-OHDA-induced partial lesion of the nigrostriatal system. Cell Biol Int 28:849–861

    Article  CAS  PubMed  Google Scholar 

  • Chen LW, Wei LC, Qiu Y, Liu HL, Rao ZR, Ju G, Chan YS (2002) Significant up-regulation of nestin protein in the neostriatum of MPTP-treated mice. Are the striatal astrocytes regionally activated after systemic MPTP administration? Brain Res 925:9–17

    Article  CAS  PubMed  Google Scholar 

  • Chen LW, Hu HJ, Liu HL, Yung KK, Chan YS (2004) Identification of brain-derived neurotrophic factor in nestin-expressing astroglial cells in the neostriatum of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-treated mice. Neuroscience 126:941–953

    Article  CAS  PubMed  Google Scholar 

  • Chojnacki AK, Mak GK, Weiss S (2009) Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci 10:153–163

    Article  CAS  PubMed  Google Scholar 

  • Chung EK, Chen LW, Chan YS, Yung KK (2008) Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol 511:421–437

    Article  CAS  PubMed  Google Scholar 

  • Costa MR, Götz M, Berninger B (2010) What determines neurogenic competence in glia? Brain Res Rev 63:47–59

    Article  CAS  PubMed  Google Scholar 

  • Dahlstrand J, Lardelli M, Lendahl U (1995) Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res 84:109–129

    Article  CAS  PubMed  Google Scholar 

  • Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28:10434–10442

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F (2003a) The glial identity of neural stem cells.Nat Neurosci 6:1127-1134

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F (2003b)A niche for adult neural stem cells.Curr Opin Genet Dev 13:543–550

    Article  CAS  PubMed  Google Scholar 

  • Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54:15–36

    Article  CAS  PubMed  Google Scholar 

  • Freedman LJ, Maddox MT (2001) A comparison of anti-biotin and biotinylated anti-avidin double-bridge and biotinylated tyramide immunohistochemical amplification. J Neurosci Methods 112:43–49

    Article  CAS  PubMed  Google Scholar 

  • Frisen J, Johansson CB, Torok C, Risling M, Lendahl U (1995) Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol 131:453–464

    Article  CAS  PubMed  Google Scholar 

  • Garden GA, Moller T (2006) Microglia biology in health and disease. J Neuroimmune Pharmacol 1:127–137

    Article  PubMed  Google Scholar 

  • Gerdes J, Lemke H, Baisch H, Wacker H, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710–1715

    CAS  PubMed  Google Scholar 

  • Gilyarov AV (2008) Nestin in central nervous system cells. Neurosci Behav Physiol 38:165–169

    Article  CAS  PubMed  Google Scholar 

  • Gomide VC, Silveira GA, Chadi G (2005) Transient and widespread astroglial activation in the brain after a striatal 6-OHDA-induced partial lesion of the nigrostriatal system. Int J Neurosci 115:99–117

    Article  CAS  PubMed  Google Scholar 

  • Gordon MN, Schreier WA, Ou X, Holcomb LA, Morgan DG (1997) Exaggerated astrocyte reactivity after nigrostriatal deafferentation in the aged rat. J Comp Neurol 388:106–119

    Article  CAS  PubMed  Google Scholar 

  • Götz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21:1031–1044

    Article  PubMed  Google Scholar 

  • Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481–488

    Article  CAS  PubMed  Google Scholar 

  • Heinrich C, Blum R, Gascón S, Masserdotti G, Tripathi P, Sánchez R, Tiedt S, Schroeder T, Götz M, Berninger B (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons.PLoS Biol 8:e1000373

    Article  PubMed  Google Scholar 

  • Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde YA, Götz M (2002) Glial cells generate neurons: the role of the transcription factor Pax6.Nat Neurosci 5:308–315 (Erratum in: Nat Neurosci 5:500)

    Article  CAS  PubMed  Google Scholar 

  • Henning J, Strauss U, Wree A, Gimsa J, Rolfs A, Benecke R, Gimsa U (2008) Differential astroglial activation in 6-hydroxydopamine models of Parkinson’s disease. Neurosci Res 62:246–253

    Article  CAS  PubMed  Google Scholar 

  • Henry V, Paille V, Lelan F, Brachet P, Damier P (2009) Kinetics of microglial activation and degeneration of dopamine-containing neurons in a rat model of Parkinson disease induced by 6-hydroxydopamine. J Neuropathol Exp Neurol 68:1092–1102

    Article  CAS  PubMed  Google Scholar 

  • Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735

    Article  PubMed  Google Scholar 

  • Hu XT, Wachtel SR, Galloway MP, White FJ (1990) Lesions of the nigrostriatal dopamine projection increase the inhibitory effects of D1 and D2 dopamine agonists on caudate-putamen neurons and relieve D2 receptors from the necessity of D1 receptor stimulation. J Neurosci 10:2318–2329

    CAS  PubMed  Google Scholar 

  • Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Mol Brain Res 57:1–9

    Article  CAS  PubMed  Google Scholar 

  • Karakaya S, Kipp M, Beyer C (2007) Oestrogen regulates the expression and function of dopamine transporters in astrocytes of the nigrostriatal system. J Neuroendocrinol 19:682–690

    Article  CAS  PubMed  Google Scholar 

  • Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA (2008) Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci USA 105:19508–19513

    Article  CAS  PubMed  Google Scholar 

  • Kay JN, Blum M (2000) Differential response of ventral midbrain and striatal progenitor cells to lesions of the nigrostriatal dopaminergic projection. Dev Neurosci 22:56–67

    Article  CAS  PubMed  Google Scholar 

  • Levison SW, Goldman JE (1993) Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10:201–212

    Article  CAS  PubMed  Google Scholar 

  • Lin RC, Matesic DF, Marvin M, McKay RD, Brustle O (1995) Re-expression of the intermediate filament nestin in reactive astrocytes. Neurobiol Dis 2:79–85

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Lau Y-S, Petroske E, Wang JQ (2001) Profound astrogenesis in the striatum of adult mice following nigrostriatal dopaminergic lesion by repeated MPTP administration. Dev Brain Res 131:57–65

    Article  CAS  Google Scholar 

  • Mathewson AJ, Berry M (1985) Observations on the astrocyte response to a cerebral stab wound in adult rats. Brain Res 327:61–69

    Article  CAS  PubMed  Google Scholar 

  • Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67:451–467

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Wakabayashi T, Takamori Y, Kitaya K, Yamada H (2009) Phenotype analysis and quantification of proliferating cells in the cortical gray matter of the adult rat. Acta Histochem Cytochem 42:1–8

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10:9–22

    Article  CAS  PubMed  Google Scholar 

  • Norton WT (1999) Cell reactions following acute brain injury: a review. Neurochem Res 24:213–218

    Article  CAS  PubMed  Google Scholar 

  • Osumi N (2001) The role of Pax6 in brain patterning. Tohoku J Exp Med 193:163–174

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates (2nd edn). Academic Press, San Diego

    Google Scholar 

  • Pinto L, Götz M (2007) Radial glial cell heterogeneity—the source of diverse progeny in the CNS. Prog Neurobiol 83:2–23

    Article  CAS  PubMed  Google Scholar 

  • Prosser J, Heyningen V van (1998) PAX6 mutations reviewed. Hum Mutat 11:93–108

    Article  CAS  PubMed  Google Scholar 

  • Raicevic N, Mladenovi A, Perovi M, Miljkovi D, Trajkovi V (2005) The Mechanisms of 6-Hydroxydopamine-Induced Astrocyte Death. Annals of the New York Academy of Sciences 1048:400–405

    Article  CAS  PubMed  Google Scholar 

  • Rasband WS (1997-2009) ImageJ. National Institutes of Health, Bethesda, Md., USA

    Google Scholar 

  • Rodriguez M, Barroso-Chinea P, Abdala P, Obeso J, Gonzalez-Hernandez T (2001) Dopamine cell degeneration induced by intraventricular administration of 6-hydroxydopamine in the rat: similarities with cell loss in Parkinson’s disease. Exp Neurol 169:163–181

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Osumi N (2008) The neurogenesis-controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes. J Neurosci 28:4604–4612

    Article  CAS  PubMed  Google Scholar 

  • Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    Article  CAS  PubMed  Google Scholar 

  • Sheng JG, Shirabe S, Nishiyama N, Schwartz JP (1993) Alterations in striatal glial fibrillary acidic protein expression in response to 6-hydroxydopamine-induced denervation. Exp Brain Res 95:450–456

    Article  CAS  PubMed  Google Scholar 

  • Simpson TI, Price DJ (2002) Pax6; a pleiotropic player in development. Bioessays 24:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  CAS  PubMed  Google Scholar 

  • Stromberg I, Bjorklund H, Dahl D, Jonsson G, Sundstrom E, Olson L (1986) Astrocyte responses to dopaminergic denervations by 6-hydroxydopamine and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine as evidenced by glial fibrillary acidic protein immunohistochemistry. Brain Res Bull 17:225–236

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi K, Takebayashi H, Manabe T, Tanaka KF, Makinodan M, Yamauchi T, Makinodan E, Matsuyoshi H, Okuda H, Ikenaka K, Wanaka A (2008) Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes. J Neurosci Res 86:3494–3502

    Article  CAS  PubMed  Google Scholar 

  • Wang A, He BP (2009) Characteristics and functions of NG2 cells in normal brain and neuropathology. Neurol Res 31:144–150

    Article  PubMed  Google Scholar 

  • Yan Y-P, Lang BT, Vemuganti R, Dempsey RJ (2009) Persistent migration of neuroblasts from the subventricular zone to the injured striatum mediated by osteopontin following intracerebral hemorrhage. J Neurochem 109:1624–1635

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Cheng XP, Li JW, Yao Q, Ju G (2009) De-differentiation response of cultured astrocytes to injury induced by scratch or conditioned culture medium of scratch-insulted astrocytes. Cell Mol Neurobiol 29:455–473

    Article  PubMed  Google Scholar 

  • Yoo YM, Lee U, Kim YJ (2005) Apoptosis and nestin expression in the cortex and cultured astrocytes following 6-OHDA administration. Neurosci Lett 382:88–92

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Cao G, Feng L (2006) Low temperature induced de-differentiation of astrocytes. J Cell Biochem 99:1096–1107

    Article  CAS  PubMed  Google Scholar 

  • Zhao J-W, Raha-Chowdhury R, Fawcett JW, Watts C (2009) Astrocytes and oligodendrocytes can be generated from NG2+ progenitors after acute brain injury: intracellular localization of oligodendrocyte transcription factor 2 is associated with their fate choice. Eur J Neurosci 29:1853–1869

    Article  PubMed  Google Scholar 

  • Zigmond MJ, Stricker EM (1972) Deficits in feeding behavior after intraventricular injection of 6-hydroxydopamine in rats. Science 177:1211–1214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ulrich Mattheus, Elke Maier, and Mihnea Nicolescu for excellent technical assistance and Stephan Grissmer for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kueppers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wachter, B., Schürger, S., Rolinger, J. et al. Effect of 6-hydroxydopamine (6-OHDA) on proliferation of glial cells in the rat cortex and striatum: evidence for de-differentiation of resident astrocytes. Cell Tissue Res 342, 147–160 (2010). https://doi.org/10.1007/s00441-010-1061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1061-x

Keywords

Navigation