Abstract
As the human lung is exposed to a variety of microbial pathogens in the environment, a first line of defense is built up by pulmonary cells like bronchial/alveolar epithelial cells and alveolar macrophages. These cells express several pattern recognition receptors (PRRs) recognizing highly conserved microbial motifs and initiating the production of chemokines and pro- and anti-inflammatory cytokines acting as transmembrane or intracellular receptors. This might not only lead to acute but also to chronic inflammation which is discussed as an underlying mechanism in the pathogenesis of different lung diseases.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abdul-Sater AA, Said-Sadier N, Ojcius DM, Yilmaz O, Kelly KA (2009) Inflammasomes bridge signaling between pathogen identification and the immune response. Drugs Today (Barc ) 45(Suppl B):105–112
Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4(7):499–511
Amiel E, Alonso A, Uematsu S, Akira S, Poynter ME, Berwin B (2009) Pivotal Advance: Toll-like receptor regulation of scavenger receptor-A-mediated phagocytosis. J Leukoc Biol 85(4):595–605
Bals R, Hiemstra PS (2004) Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J 23(2):327–333
Barton JL, Berg T, Didon L, Nord M (2007) The pattern recognition receptor Nod1 activates CCAAT/enhancer binding protein beta signalling in lung epithelial cells. Eur Respir J 30(2):214–222
Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S (2003) Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 197(9):1119–1124
Chaudhuri N, Dower SK, Whyte MK, Sabroe I (2005) Toll-like receptors and chronic lung disease. Clin Sci (Lond) 109(2):125–133
Damiano JS, Newman RM, Reed JC (2004) Multiple roles of CLAN (caspase-associated recruitment domain, leucine-rich repeat, and NAIP CIIA HET-E, and TP1-containing protein) in the mammalian innate immune response. J Immunol 173(10):6338–6345
Dessing MC, Florquin S, Paton JC, van der PT (2008) Toll-like receptor 2 contributes to antibacterial defence against pneumolysin-deficient pneumococci. Cell Microbiol 10(1):237–246
Domagala-Kulawik J (2008) Effects of cigarette smoke on the lung and systemic immunity. J Physiol Pharmacol 59(Suppl 6):19–34
Droemann D, Goldmann T, Tiedje T, Zabel P, Dalhoff K, Schaaf B (2005) Toll-like receptor 2 expression is decreased on alveolar macrophages in cigarette smokers and COPD patients. Respir Res 6:68
Droemann D, Rupp J, Rohmann K, Osbahr S, Ulmer AJ, Marwitz S et al (2010) The TGF-beta-Pseudoreceptor BAMBI is strongly expressed in COPD lungs and regulated by nontypeable Haemophilus influenzae. Respir Res 11:67
Hansel TT, Barnes PJ (2009) New drugs for exacerbations of chronic obstructive pulmonary disease. Lancet 374(9691):744–755
Henning LN, Azad AK, Parsa KV, Crowther JE, Tridandapani S, Schlesinger LS (2008) Pulmonary surfactant protein A regulates TLR expression and activity in human macrophages. J Immunol 180(12):7847–7858
Hippenstiel S, Opitz B, Schmeck B, Suttorp N (2006) Lung epithelium as a sentinel and effector system in pneumonia–molecular mechanisms of pathogen recognition and signal transduction. Respir Res 7:97
Homma T, Kato A, Hashimoto N, Batchelor J, Yoshikawa M, Imai S et al (2004) Corticosteroid and cytokines synergistically enhance toll-like receptor 2 expression in respiratory epithelial cells. Am J Respir Cell Mol Biol 31(4):463–469
Imasato A, Desbois-Mouthon C, Han J, Kai H, Cato AC, Akira S et al (2002) Inhibition of p38 MAPK by glucocorticoids via induction of MAPK phosphatase-1 enhances nontypeable Haemophilus influenzae-induced expression of toll-like receptor 2. J Biol Chem 277(49):47444–47450
Inohara, Chamaillard, McDonald C, Nunez G (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383
Janardhan KS, McIsaac M, Fowlie J, Shrivastav A, Caldwell S, Sharma RK et al (2006) Toll like receptor-4 expression in lipopolysaccharide induced lung inflammation. Histol Histopathol 21(7):687–696
Kato H, Takeuchi O, Akira S (2006) Cell type specific involvement of RIG-I in antiviral responses. Nippon Rinsho 64(7):1244–1247
Kerrigan AM, Brown GD (2009) C-type lectins and phagocytosis. Immunobiology 214(7):562–575
Knuefermann P, Baumgarten G, Koch A, Schwederski M, Velten M, Ehrentraut H et al (2007) CpG oligonucleotide activates Toll-like receptor 9 and causes lung inflammation in vivo. Respir Res 8:72
Kobayashi K, Inohara N, Hernandez LD, Galan JE, Nunez G, Janeway CA et al (2002) RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416(6877):194–199
Krishnan J, Selvarajoo K, Tsuchiya M, Lee G, Choi S (2007) Toll-like receptor signal transduction. Exp Mol Med 39(4):421–438
Kuronuma K, Sano H, Kato K, Kudo K, Hyakushima N, Yokota S et al (2004) Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A. J Biol Chem 279(20):21421–21430
Le Cabec V, Emorine LJ, Toesca I, Cougoule C, Maridonneau-Parini I (2005) The human macrophage mannose receptor is not a professional phagocytic receptor. J Leukoc Biol 77(6):934–943
Lloyd C, Murdoch JR (2010) Tolerizing allergic responses in the lung. Mucosal Immunol 3(4):334–344
Marti-Lliteras P, Regueiro V, Morey P, Hood DW, Saus C, Sauleda J et al (2009) Nontypeable Haemophilus influenzae clearance by alveolar macrophages is impaired by exposure to cigarette smoke. Infect Immun 77(10):4232–4242
Martin TR, Frevert CW (2005) Innate immunity in the lungs. Proc Am Thorac Soc 2(5):403–411
McDonald C, Inohara N, Nunez G (2005) Peptidoglycan signaling in innate immunity and inflammatory disease. J Biol Chem 280(21):20177–20180
Netea MG, Kullberg BJ, de Jong DJ, Franke B, Sprong T, Naber TH et al (2004) NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: implications for Crohn's disease. Eur J Immunol 34(7):2052–2059
Opitz B, Puschel A, Schmeck B, Hocke AC, Rosseau S, Hammerschmidt S et al (2004) Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem 279(35):36426–36432
Opitz B, van Laak V, Eitel J, Suttorp N (2010) Innate immune recognition in infectious and noninfectious diseases of the lung. Am J Respir Crit Care Med 181(12):1294–1309
Pabst R, Tschernig T (2010) Bronchus-associated lymphoid tissue (BALT): An entry site for antigens for successful mucosal vaccinations? Am J Respir Cell Mol Biol 43(2):137–141
Pastva AM, Wright JR, Williams KL (2007) Immunomodulatory roles of surfactant proteins A and D: implications in lung disease. Proc Am Thorac Soc 4(3):252–257
Platt N, Gordon S (2001) Is the class A macrophage scavenger receptor (SR-A) multifunctional? - The mouse's tale. J Clin Invest 108(5):649–654
Randall TD (2010) Pulmonary dendritic cells: thinking globally, acting locally. J Exp Med 207(3):451–454
Ratner AJ, Lysenko ES, Paul MN, Weiser JN (2005) Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces. Proc Natl Acad Sci USA 102(9):3429–3434
Reppe K, Tschernig T, Luhrmann A (2009) van L, V, Grote K, Zemlin MV et al. Immunostimulation with macrophage-activating lipopeptide-2 increased survival in murine pneumonia. Am J Respir Cell Mol Biol 40(4):474–481
Saito T, Yamamoto T, Kazawa T, Gejyo H, Naito M (2005) Expression of toll-like receptor 2 and 4 in lipopolysaccharide-induced lung injury in mouse. Cell Tissue Res 321(1):75–88
Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H et al (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8(1):31–38
Tschernig T, de Vries VC, Debertin AS, Braun A, Walles T, Traub F et al (2006) Density of dendritic cells in the human tracheal mucosa is age dependent and site specific. Thorax 61(11):986–991
Tschernig T, Luhrmann A, Debertin AS, Pabst R (2007) Adaptive immune system in the developing lung–bronchi associated lymphoid tissue and dendritic cells in humans and in rat models. Pneumologie 61(7):485–486
Wang X, Moser C, Louboutin JP, Lysenko ES, Weiner DJ, Weiser JN et al (2002) Toll-like receptor 4 mediates innate immune responses to Haemophilus influenzae infection in mouse lung. J Immunol 168(2):810–815
Wieland CW, Florquin S, Maris NA, Hoebe K, Beutler B, Takeda K et al (2005) The MyD88-dependent, but not the MyD88-independent, pathway of TLR4 signaling is important in clearing nontypeable haemophilus influenzae from the mouse lung. J Immunol 175(9):6042–6049
Wilkins C, Gale M Jr (2010) Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol 22(1):41–47
Zola TA, Lysenko ES, Weiser JN (2008) Mucosal clearance of capsule-expressing bacteria requires both TLR and nucleotide-binding oligomerization domain 1 signaling. J Immunol 181(11):7909–7916
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rohmann, K., Tschernig, T., Pabst, R. et al. Innate immunity in the human lung: pathogen recognition and lung disease. Cell Tissue Res 343, 167–174 (2011). https://doi.org/10.1007/s00441-010-1048-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00441-010-1048-7

