Skip to main content

Advertisement

Log in

Dilated capillaries, disorganized collagen fibers and differential gene expression in periodontal ligaments of hypomorphic fibrillin-1 mice

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The periodontal ligaments (PDLs) are soft connective tissue between the cementum covering the tooth root surface and alveolar bone. PDLs are composed of collagen and elastic system fibers, blood vessels, nerves, and various types of cells. Elastic system fibers are generally formed by elastin and microfibrils, but PDLs are mainly composed of the latter. Compared with the well-known function of collagen fibers to support teeth, little is known about the role of elastic system fibers in PDLs. To clarify their role, we examined PDLs of mice underexpressing fibrillin-1 (mgR mice), which is one of the major microfibrillar proteins. The PDLs of homozygous mgR mice showed one-quarter of the elastic system fibers of wild-type (WT) mice. A close association between the elastic system fibers and the capillaries was noted in WT, homozygous and heterozygous mgR mice. Interestingly, capillaries in PDLs of homozygous mice were dilated or enlarged compared with those of WT mice. A comparable level of type I collagen, which is the major collagen in PDLs, was expressed in PDL-cells of mice with three genotypes. However, multi-oriented collagen fiber bundles with a thinner appearance were noted in homozygous mice, whereas well-organized collagen fiber bundles were seen in WT mice. Moreover, there was a marked decrease in periostin expression, which is known to regulate the fibrillogenesis and crosslinking of collagen. These observations suggest that the microfibrillar protein, fibrillin-1, is indispensable for normal tissue architecture and gene expression of PDLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afanador E, Yokozeki M, Oba Y, Kitase Y, Takahashi T, Kudo A, Moriyama K (2005) Messenger RNA expression of periostin and Twist transiently decrease by occlusal hypofunction in mouse periodontal ligament. Arch Oral Biol 50:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Arteaga-Solis E, Gayraud B, Ramirez F (2000) Elastic and collagenous networks in vascular diseases. Cell Struct Funct 25:69–72

    Article  CAS  PubMed  Google Scholar 

  • Beertsen W, McCulloch CA, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13:20–40

    Google Scholar 

  • Bray BA (1978) Presence of fibronectin in basement membranes and acidic structural glycoproteins from human placenta and lung. Ann NY Acad Sci 312:142–150

    Article  CAS  PubMed  Google Scholar 

  • Carta L, Pereira L, Arteaga-Solis E, Lee-Arteaga SY, Lenart B, Starcher B, Merkel CA, Sukoyan M, Kerkis A, Hazeki N, Keene DR, Sakai LY, Ramirez F (2006) Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J Biol Chem 281:8016–8023

    Article  CAS  PubMed  Google Scholar 

  • Clark JM, Glagov S (1985) Transmural organization of the arterial media. The lamellar unit revisited. Arteriosclerosis 5:19–34

    CAS  PubMed  Google Scholar 

  • De Coster PJ, Martens LC, De Paepe A (2002) Oral manifestations of patients with Marfan syndrome: a case-control study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:564–572

    Article  PubMed  Google Scholar 

  • Florey (1966) The endothelial cell. Br Med J 2:487–490

    Article  CAS  PubMed  Google Scholar 

  • Freezer SR, Sims MR (1987) A transmission electron-microscope stereological study of the blood vessels, oxytalan fibers and nerves of mouse-molar periodontal ligament. Arch Oral Biol 32:407–412

    Article  CAS  PubMed  Google Scholar 

  • Fullmer HM, Sheetz JH, Narkates AJ (1974) Oxytalan connective tissue fibers: a review. J Oral Pathol 3:291–316

    Article  CAS  PubMed  Google Scholar 

  • Gordon MK, Gerecke DR, Olsen BR (1987) Type XII collagen: distinct extracellular matrix component discovered by cDNA cloning. Proc Natl Acad Sci USA 84:6040–6044

    Article  CAS  PubMed  Google Scholar 

  • Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316:1–11

    CAS  PubMed  Google Scholar 

  • Karimbux NY, Nishimura I (1995) Temporal and spatial expressions of type XII collagen in the remodeling periodontal ligament during experimental tooth movement. J Dent Res 74:313–318

    Article  CAS  PubMed  Google Scholar 

  • Karimbux NY, Rosenblum ND, Nishimura I (1992) Site-specific expression of collagen I and XII mRNAs in the rat periodontal ligament at two developmental stages. J Dent Res 71:1355–1362

    CAS  PubMed  Google Scholar 

  • Kashima TG, Nishiyama T, Shimazu K, Shimazaki M, Kii I, Grigoriadis AE, Fukayama M, Kudo A (2009) Periostin, a novel marker of intramembranous ossification, is expressed in fibrous dysplasia and in c-Fos-overexpressing bone lesions. Hum Pathol 40:226–237

    Article  CAS  PubMed  Google Scholar 

  • Kefalides NA (1973) Structure and biosynthesis of basement membranes. Int Rev Connect Tissue Res 6:63–104

    CAS  PubMed  Google Scholar 

  • Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828

    CAS  PubMed  Google Scholar 

  • Kii I, Amizuka N, Minqi L, Kitajima S, Saga Y, Kudo A (2006) Periostin is an extracellular matrix protein required for eruption of incisors in mice. Biochem Biophys Res Commun 342:766–772

    Article  CAS  PubMed  Google Scholar 

  • MacNeil RL, Berry JE, Strayhorn CL, Shigeyama Y, Somerman MJ (1998) Expression of type I and XII collagen during development of the periodontal ligament in the mouse. Arch Oral Biol 43:779–787

    Article  CAS  PubMed  Google Scholar 

  • Mecham RP (1991) Elastin synthesis and fiber assembly. Ann NY Acad Sci 624:137–146

    Article  CAS  PubMed  Google Scholar 

  • Nanci A (2007) Ten Cate’s oral histology: Development. Structure and Function. Mosby, St Louis, Missouri, pp 256–287

    Google Scholar 

  • Nishiyama T, McDonough AM, Bruns RR, Burgeson RE (1994) Type XII and XIV collagens mediate interactions between banded collagen fibers in vitro and may modulate extracellular matrix deformability. J Biol Chem 269:28193–28199

    CAS  PubMed  Google Scholar 

  • Noonan DM, Fulle A, Valente P, Cai S, Horigan E, Sasaki M, Yamada Y, Hassell JR (1991) The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. J Biol Chem 266:22939–22947

    CAS  PubMed  Google Scholar 

  • Norris RA, Damon B, Mironov V, Kasyanov V, Ramamurthi A, Moreno-Rodriguez R, Trusk T, Potts JD, Goodwin RL, Davis J, Hoffman S, Wen X, Sugi Y, Kern CB, Mjaatvedt CH, Turner DK, Oka T, Conway SJ, Molkentin JD, Forgacs G, Markwald RR (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101:695–711

    Article  CAS  PubMed  Google Scholar 

  • Norris RA, Moreno-Rodriguez R, Hoffman S, Markwald RR (2009) The many facets of the matricelluar protein periostin during cardiac development, remodeling, and pathophysiology. J Cell Commun Signal 3:275–286

    Article  PubMed  Google Scholar 

  • Pan TC, Kluge M, Zhang RZ, Mayer U, Timpl R, Chu ML (1993) Sequence of extracellular mouse protein BM-90/fibulin and its calcium-dependent binding to other basement-membrane ligands. Eur J Biochem 215:733–740

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR, Ono R, Reinhardt DP, Sakai LY, Biery NJ, Bunton T, Dietz HC, Ramirez F (1997) Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 17:218–222

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, Biery NJ, Dietz HC, Sakai LY, Ramirez F (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 96:3819–3823

    Article  CAS  PubMed  Google Scholar 

  • Pyeritz RE (2000) The Marfan syndrome. Annu Rev Med 51:481–510

    Article  CAS  PubMed  Google Scholar 

  • Reichenberger E, Baur S, Sukotjo C, Olsen BR, Karimbux NY, Nishimura I (2000) Collagen XII mutation disrupts matrix structure of periodontal ligament and skin. J Dent Res 79:1962–1968

    Article  CAS  PubMed  Google Scholar 

  • Rieppo J, Hallikainen J, Jurvelin JS, Kiviranta I, Helminen HJ, Hyttinen MM (2008) Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage. Microsc Res Tech 71:279–287

    Article  PubMed  Google Scholar 

  • Rios H, Koushik SV, Wang H, Wang J, Zhou HM, Lindsley A, Rogers R, Chen Z, Maeda M, Kruzynska-Frejtag A, Feng JQ, Conway SJ (2005) Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol 25:11131–11144

    Article  CAS  PubMed  Google Scholar 

  • Rios HF, Ma D, Xie Y, Giannobile WV, Bonewald LF, Conway SJ, Feng JQ (2008) Periostin is essential for the integrity and function of the periodontal ligament during occlusal loading in mice. J Periodontol 79:1480–1490

    Article  CAS  PubMed  Google Scholar 

  • Ritty TM, Broekelmann TJ, Werneck CC, Mecham RP (2003) Fibrillin-1 and -2 contain heparin-binding sites important for matrix deposition and that support cell attachment. Biochem J 375:425–432

    Article  CAS  PubMed  Google Scholar 

  • Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF, Reinhardt DP (2009) Fibrillin assembly requires fibronectin. Mol Biol Cell 20:846–858

    Article  CAS  PubMed  Google Scholar 

  • Sato T (1968) A modified method for lead staining of thin sections. J Electron Microsc 17:158–159

    CAS  Google Scholar 

  • Sawada T, Sugawara Y, Asai T, Aida N, Yanagisawa T, Ohta K, Inoue S (2006) Immunohistochemical characterization of elastic system fibers in rat molar periodontal ligament. J Histochem Cytochem 54:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Shadwick RE (1999) Mechanical design in arteries. J Exp Biol 202:3305–3313

    CAS  PubMed  Google Scholar 

  • Shaw LM, Olsen BR (1991) FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem Sci 16:191–194

    Article  CAS  PubMed  Google Scholar 

  • Shiga M, Saito M, Hattori M, Torii C, Kosaki K, Kiyono T, Suda N (2008) Characteristic phenotype of immortalized periodontal cells isolated from a Marfan syndrome type I patient. Cell Tissue Res 331:461–472

    Article  CAS  PubMed  Google Scholar 

  • Staszyk C, Gasse H (2004) Oxytalan fibres in the periodontal ligament of equine molar cheek teeth. Anat Histol Embryol 33:17–22

    Article  CAS  PubMed  Google Scholar 

  • Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assemblystimulates endothelial basement membrane matrix formation. Blood 114:5091–5101

    Article  CAS  PubMed  Google Scholar 

  • Suda N, Baba O, Udagawa N, Terashima T, Kitahara Y, Takano Y, Kuroda T, Senior PV, Beck F, Hammond VE (2001) Parathyroid hormone-related protein is required for normal intramembranous bone development. J Bone Miner Res 16:2182–2191

    Article  CAS  PubMed  Google Scholar 

  • Suda N, Shiga M, Ganburged G, Moriyama K (2009) Marfan syndrome and its disorder in periodontal tissues. J Exp Zool B Mol Dev Evol 312B:503–509

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Amizuka N, Kii I, Kawano Y, Nozawa-Inoue K, Suzuki A, Yoshie H, Kudo A, Maeda T (2004) Immunohistochemical localization of periostin in tooth and its surrounding tissues in mouse mandibles during development. Anat Rec A Discov Mol Cell Evol Biol 281:1264–1275

    Article  PubMed  Google Scholar 

  • Takeshita S, Kikuno R, Tezuka K, Amann E (1993) Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294:271–278

    CAS  PubMed  Google Scholar 

  • Tashiro K, Sawada T, Inoue S, Yanagisawa T (2002) Development of oxytalan fibers in the rat molar periodontal ligament. J Periodontal Res 37:345–352

    Article  PubMed  Google Scholar 

  • Tiedemann K, Batge B, Muller PK, Reinhardt DP (2001) Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem 276:36035–36042

    Article  CAS  PubMed  Google Scholar 

  • Tiedemann K, Sasaki T, Gustafsson E, Gohring W, Batge B, Notbohm H, Timpl R, Wedel T, Schlotzer-Schrehardt U, Reinhardt DP (2005) Microfibrils at basement membrane zones interact with perlecan via fibrillin-1. J Biol Chem 280:11404–11412

    Article  CAS  PubMed  Google Scholar 

  • Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR (1979) Laminin–a glycoprotein from basement membranes. J Biol Chem 254:9933–9937

    CAS  PubMed  Google Scholar 

  • Timpl R, Dziadek M, Fujiwara S, Nowack H, Wick G (1983) Nidogen: a new, self-aggregating basement membrane protein. Eur J Biochem 137:455–465

    Article  CAS  PubMed  Google Scholar 

  • Tsuruga E, Nakashima K, Ishikawa H, Yajima T, Sawa Y (2009) Stretching modulates oxytalan fibers in human periodontal ligament cells. J Periodontal Res 44:170–174

    Article  CAS  PubMed  Google Scholar 

  • Vehviläinen P, Hyytiäinen M, Keski-Oja J (2009) Matrix association of latent TGF-beta binding protein-2 (LTBP-2) is dependent on fibrillin-1. J Cell Physiol 221:586–593

    Article  PubMed  Google Scholar 

  • Veit G, Hansen U, Keene DR, Bruckner P, Chiquet-Ehrismann R, Chiquet M, Koch M (2006) Collagen XII interacts with avian tenascin-X through its NC3 domain. J Biol Chem 281:27461–27470

    Article  CAS  PubMed  Google Scholar 

  • Wilde J, Yokozeki M, Terai K, Kudo A, Moriyama K (2003) The divergent expression of periostin mRNA in the periodontal ligament during experimental tooth movement. Cell Tissue Res 312:345–351

    Article  CAS  PubMed  Google Scholar 

  • Yoda S, Suda N, Kitahara Y, Komori T, Ohyama K (2004) Delayed tooth eruption and suppressed osteoclast number in the eruption pathway of heterozygous Runx2/Cbfa1 knockout mice. Arch Oral Biol 49:435–442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Professor Francesco Ramirez (Mount Sinai School of Medicine) for providing the mgR mutant mice. The authors would like to thank Dr. Kyoko Oka (Fukuoka Dental College) for valuable suggestions and technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Suda.

Additional information

Funding

This study was supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 18390552, 19659547, and 21390546), by Sato Fund and Dental Research Center Grant at Nihon University School of Dentistry, and by Grant for Supporting Project for Strategic Research of Nihon University School Dentistry at Matsudo by the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganburged, G., Suda, N., Saito, M. et al. Dilated capillaries, disorganized collagen fibers and differential gene expression in periodontal ligaments of hypomorphic fibrillin-1 mice. Cell Tissue Res 341, 381–395 (2010). https://doi.org/10.1007/s00441-010-1021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1021-5

Keywords

Navigation