Skip to main content

Advertisement

Log in

Synthetic modified N-POMC1–28 controls in vivo proliferation and blocks apoptosis in rat adrenal cortex

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The identity of the pro-opiomelanocortin (POMC)-derived mitogen in the adrenal cortex has been historically controversial. We have used well-established in vivo models, viz., hypophysectomized (Hyp) or dexamethasone (Dex)-treated rats, to study the effect of the synthetic modified peptide N-terminal POMC (N-POMC1–28) on DNA synthesis in the adrenal cortex, as assessed by BrdU incorporation and compared with adrenocorticotropic hormone (ACTH). We evaluated the importance of disulfide bridges on proliferation by employing N-POMC1–28 without disulfide bridges and with methionines replacing cysteines. Acute administration of synthetic modified N-POMC1–28 distinctly increased DNA synthesis in the zona glomerulosa and zona fasciculata, but not in the zona reticularis in Hyp rats, whereas in Dex-treated rats, this peptide was effective in all adrenal zones. ACTH administration led to an increase of BrdU-positive cells in all adrenal zones irrespective of the depletion of Hyp or Dex-POMC peptides. The use of the ACTH antagonist, ACTH7–38, confirmed the direct participation of ACTH in proliferation. Two different approaches to measure apoptosis revealed that both peptides similarly exerted a protective effect on all adrenocortical zones, blocking the apoptotic cell death induced by hypophysectomy. Thus, ACTH1–39 and N-POMC1–28 have similar actions suggesting that the disulfide bridges are important but not essential. Both peptides seem to be important factors determining adrenocortical cell survival throughout the adrenal cortex, reinforcing the idea that each zone can be renewed from within itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baccaro RB, Mendonca PO, Torres TE, Lotfi CF (2007) Immunohistochemical Jun/Fos protein localization and DNA synthesis in rat adrenal cortex after treatment with ACTH or FGF2. Cell Tissue Res 328:7–18

    Article  CAS  PubMed  Google Scholar 

  • Bennett HP, Seidah NG, Benjannet S, Solomon S, Chretien M (1986) Reinvestigation of the disulfide bridge arrangement in human pro-opiomelanocortin N-terminal segment (hNT 1–76). Int J Pept Protein Res 27:306–313

    CAS  PubMed  Google Scholar 

  • Bicknell AB (2003) Identification of a serine protease involved with the regulation of adrenal growth. Ann N Y Acad Sci 994:118–122

    Article  CAS  PubMed  Google Scholar 

  • Bicknell AB, Lomthaisong K, Woods RJ, Hutchinson EG, Bennett HP, Gladwell RT, Lowry PJ (2001) Characterization of a serine protease that cleaves pro-gamma-melanotropin at the adrenal to stimulate growth. Cell 105:903–912

    Article  CAS  PubMed  Google Scholar 

  • Bland ML, Desclozeaux M, Ingraham HA (2003) Tissue growth and remodeling of the embryonic and adult adrenal gland. Ann N Y Acad Sci 995:59–72

    Article  CAS  PubMed  Google Scholar 

  • Bransome ED Jr (1968) Regulation of adrenal growth. Differences in the effects of ACTH in normal and dexamethasone-suppressed guinea pigs. Endocrinology 83:956–964

    Article  CAS  PubMed  Google Scholar 

  • Carsia RV, Macdonald GJ, Gibney JA, Tilly KI, Tilly JL (1996) Apoptotic cell death in the rat adrenal gland: an in vivo and in vitro investigation. Cell Tissue Res 283:247–254

    Article  CAS  PubMed  Google Scholar 

  • Carsia RV, Nagele RG, Morita Y, Tilly KI, Tilly JL (1998) Models to elucidate the regulation of adrenal cell death. Endocr Res 24:899–908

    Article  CAS  PubMed  Google Scholar 

  • Chester Jones I (1957) The adrenal cortex. Cambridge University Press, Cambridge

    Google Scholar 

  • Coll AP, Fassnacht M, Klammer S, Hahner S, Schulte DM (2006) Peripheral administration of the N-terminal pro-opiomelanocortin fragment 1–28 to Pomc-/- mice reduces food intake and weight but does not affect adrenal growth or corticosterone production. J Endocrinol 190:515–525

    Article  CAS  PubMed  Google Scholar 

  • Dallman MF (1984) Control of adrenocortical growth in vivo. Endocr Res 10:213–242

    Article  CAS  PubMed  Google Scholar 

  • Denef C, Roudbaraki M, Van Bael A (2001) Growth and differentiation factors derived from the N-terminal domain of pro-opiomelanocortin. Clin Exp Pharmacol Physiol 28:239–243

    Article  CAS  PubMed  Google Scholar 

  • Estivariz FE, Iturriza F, McLean C, Hope J, Lowry PJ (1982) Stimulation of adrenal mitogenesis by N-terminal proopiocortin peptides. Nature 297:419–422

    Article  CAS  PubMed  Google Scholar 

  • Estivariz FE, Carino M, Lowry PJ, Jackson S (1988) Further evidence that N-terminal pro-opiomelanocortin peptides are involved in adrenal mitogenesis. J Endocrinol 116:201–206

    Article  CAS  PubMed  Google Scholar 

  • Fassnacht M, Hahner S, Hansen IA, Kreutzberger T, Zink M, Adermann K, Jakob F, Troppmair J, Allolio B (2003) N-terminal proopiomelanocortin acts as a mitogen in adrenocortical tumor cells and decreases adrenal steroidogenesis. J Clin Endocr Metab 88:2171–2179

    Article  CAS  PubMed  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  • Hornsby PJ (1984) Regulation of adrenocortical cell proliferation in culture. Endocr Res 10:259–281

    Article  CAS  PubMed  Google Scholar 

  • Karpac J, Ostwald D, Bui S, Hunnewell P, Shankar M, Hochgeschwender U (2005) Development, maintenance, and function of the adrenal gland in early postnatal proopiomelanocortin-null mutant mice. Endocrinology 146:2555–2562

    Article  CAS  PubMed  Google Scholar 

  • Loh YP, Maldonado A, Zhang C, Tam WH, Cawley N (2002) Mechanism of sorting proopiomelanocortin and proenkephalin to the regulated secretory pathway of neuroendocrine cells. Ann N Y Acad Sci 971:416–425

    Article  CAS  PubMed  Google Scholar 

  • Lowry PJ, Silas L, McLean C, Linton EA, Estivariz FE (1983) Pro-gamma-melanocyte-stimulating hormone cleavage in adrenal gland undergoing compensatory growth. Nature 306:70–73

    Article  CAS  PubMed  Google Scholar 

  • Malendowicz LK, Nussdorfer GG, Markowska A, Nowak KW (1992) Analysis of the preventive action of ACTH on dexamethasone-induced adrenocortical atrophy in the rat. Cytobios 71:191–199

    CAS  PubMed  Google Scholar 

  • Malendowicz LK, Rebuffat P, Nussdorfer GG, Nowak KW (1998) Corticotropin-inhibiting peptide enhances aldosterone secretion by dispersed rat zona glomerulosa cells. J Steroid Biochem Mol Biol 67:149–152

    Article  CAS  PubMed  Google Scholar 

  • Mitani F, Suzuki H, Hata J, Ogishima T, Shimada H, Ishimura Y (1994) A novel cell layer without corticosteroid-synthesizing enzymes in rat adrenal cortex: histochemical detection and possible physiological role. Endocrinology 135:431–438

    Article  CAS  PubMed  Google Scholar 

  • McEwan PE, Vinson GP, Kenyon CJ (1999) Control of adrenal cell proliferation by AT1 receptors in response to angiotensin II and low-sodium diet. Am J Physiol 276:E303–E309

    CAS  PubMed  Google Scholar 

  • McNeill H, Whitworth E, Vinson GP, Hinson JP (2005) Distribution of extracellular signal-regulated protein kinases 1 and 2 in the rat adrenal and their activation by angiotensin II. J Endocrinol 187:149–157

    Article  CAS  PubMed  Google Scholar 

  • Morley SD, Viard I, Chung BC, Ikeda Y, Parker KL, Mullins JJ (1996) Variegated expression of a mouse steroid 21-hydroxylase/beta-galactosidase transgene suggests centripetal migration of adrenocortical cells. Mol Endocrinol 10:585–598

    Article  CAS  PubMed  Google Scholar 

  • New MI (1998) Diagnosis and management of congenital adrenal hyperplasia. Annu Rev Med 49:311–328

    Article  CAS  PubMed  Google Scholar 

  • Payet N, Lehoux JG, Isler H (1980) Effect of ACTH on the proliferative and secretory activities of the adrenal glomerulosa. Acta Endocrinol (Copenh) 93:365–374

    CAS  Google Scholar 

  • Pepper DJ, Bicknell AB (2009) The stimulation of mitogenic signaling pathways by N-POMC peptides. Mol Cell Endocrinol 300:77–82

    Article  CAS  PubMed  Google Scholar 

  • Pignatelli D, Ferreira J, Vendeira P, Magalhaes MC, Vinson GP (2002) Proliferation of capsular stem cells induced by ACTH in the rat adrenal cortex. Endocr Res 28:683–691

    Article  CAS  PubMed  Google Scholar 

  • Rao AJ, Long JA, Ramachandran J (1978) Effects of antiserum to adrenocorticotropin on adrenal growth and function. Endocrinology 102:371–378

    Article  CAS  PubMed  Google Scholar 

  • Seger MA, Bennett HP (1986) Structure and bioactivity of the amino-terminal fragment of pro-opiomelanocortin. J Steroid Biochem 25:703–710

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Keramidas M, Monchaux E, Feige JJ (2003) Role of adrenocorticotropic hormone in the development and maintenance of the adrenal cortical vasculature. Microsc Res Tech 61:247–251

    Article  CAS  PubMed  Google Scholar 

  • Tilly JL, Hsueh AJ (1993) Microscale autoradiographic method for the qualitative and quantitative analysis of apoptotic DNA fragmentation. J Cell Physiol 154:519–526

    Article  CAS  PubMed  Google Scholar 

  • Torres TE, Lotfi CF (2007) Distribution of cells expressing Jun and Fos proteins and synthesizing DNA in the adrenal cortex of hypophysectomized rats: regulation by ACTH and FGF2. Cell Tissue Res 329:443–455

    Article  CAS  PubMed  Google Scholar 

  • Vinson GP (2003) Adrenocortical zonation and ACTH. Microsc Res Tech 61:227–239

    Article  CAS  PubMed  Google Scholar 

  • Vinson GP (2004) Glomerulosa function and aldosterone synthesis in the rat. Mol Cell Endocrinol 217:59–65

    Article  CAS  PubMed  Google Scholar 

  • Waynforth H, Flecknell P (1992) Experimental and surgical technique in the rat. Academic Press, London

    Google Scholar 

  • Wright NA (1971) Variation in tritiated thymidine uptake during DNA synthesis in the adrenal cortex. Histochemie 28:99–102

    CAS  PubMed  Google Scholar 

  • Wyllie AH, Kerr JF, Macaskill IA, Currie AR (1973) Adrenocortical cell deletion: the role of ACTH. J Pathol 111:85–94

    Article  CAS  PubMed  Google Scholar 

  • Zajicek G, Ariel I, Arber N (1986) The streaming adrenal cortex: direct evidence of centripetal migration of adrenocytes by estimation of cell turnover rate. J Endocrinol 111:477–482

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Maria Aparecida Juliano from the Department of Biochemistry and Biophysics of the Federal University of São Paulo (UNIFESP) for the synthesis of N-POMC peptides and to Dr. Marina Baquerizo Martinez for technical assistance with measurements of the circulating plasma ACTH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudimara Ferini Pacicco Lotfi.

Additional information

The authors declare no conflicts of interest to prejudice the impartiality of the research reported.

T.E.P.T. and P.O.R.M. are recipients of scholarships from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Foundation for the Support of Research in the State of São Paulo); C.F.P.L. received funding from FAPESP, from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, The National Council for Scientific and Technological Development), and from the Pró-Reitoria de Pesquisa da Universidade de São Paulo (University of São Paulo Dean’s Office for Research Projects).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres, T.E.P., de Mendonça, P.O.R. & Lotfi, C.F.P. Synthetic modified N-POMC1–28 controls in vivo proliferation and blocks apoptosis in rat adrenal cortex. Cell Tissue Res 341, 239–250 (2010). https://doi.org/10.1007/s00441-010-0998-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0998-0

Keywords

Navigation