Skip to main content
Log in

Proliferative cell types in embryonic lineages of the central complex of the grasshopper Schistocerca gregaria

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The central complex of the grasshopper Schistocerca gregaria develops to completion during embryogenesis. A major cellular contribution to the central complex is from the w, x, y, z lineages of the pars intercerebralis, each of which comprises over 100 cells, making them by far the largest in the embryonic protocerebrum. Our focus has been to find a cellular mechanism that allows such a large number of cell progeny to be generated within a restricted period of time. Immunohistochemical visualization of the chromosomes of mitotically active cells has revealed an almost identical linear array of proliferative cells present simultaneously in each w, x, y, z lineage at 50% of embryogenesis. This array is maintained relatively unchanged until almost 70% of embryogenesis, after which mitotic activity declines and then ceases. The array is absent from smaller lineages of the protocerebrum not associated with the central complex. The proliferative cells are located apically to the zone of ganglion mother cells and amongst the progeny of the neuroblast. Comparisons of cell morphology, immunoreactivity (horseradish peroxidase, repo, Prospero), location in lineages and spindle orientation have allowed us to distinguish the proliferative cells in an array from neuroblasts, ganglion mother cells, neuronal progeny and glia. Our data are consistent with the proliferative cells being secondary (amplifying) progenitors and originating from a specific subtype of ganglion mother cell. We propose a model of the way that neuroblasts, ganglion mother cells and secondary progenitors together produce the large cell numbers found in central complex lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams RR, Maiato H, Earnshaw W, Carmena M (2001) Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153:865–879

    Article  CAS  PubMed  Google Scholar 

  • Bate CM (1976) Embryogenesis of an insect nervous system I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria. J Embryol Exp Morphol 35:107–123

    CAS  PubMed  Google Scholar 

  • Bello BC, Hirth F, Gould AP (2003) A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 37:209–219

    Article  CAS  PubMed  Google Scholar 

  • Bello BC, Izergina N, Caussinus E, Reichert H (2008) Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev 3:5

    Article  PubMed  Google Scholar 

  • Bentley D, Keshishian H, Shankland M, Torian-Raymond A (1979) Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. J Embryol Exp Morphol 54:47–74

    CAS  PubMed  Google Scholar 

  • Booker R, Truman JW (1987) Postembryonic neurogenesis in the CNS of the tobacco hornworm, Manduca sexta. I. Neuroblast arrays and the fate of their progeny during metamorphosis. J Comp Neurol 255:548–559

    Article  CAS  PubMed  Google Scholar 

  • Boone JQ, Doe CQ (2008) Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev Neurobiol 68:1185–1195

    Article  PubMed  Google Scholar 

  • Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA (2008) The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell 14:535–546

    Article  CAS  PubMed  Google Scholar 

  • Boyan GS, Williams JLD (1997) Embryonic development of the pars intercerebralis/central complex of the grasshopper. Dev Genes Evol 207:317–329

    Article  Google Scholar 

  • Boyan G, Williams L, Meier T (1993) Organization of the commissural fibers in the adult and early embryonic brain of the locust. J Comp Neurol 332:358–377

    Article  CAS  PubMed  Google Scholar 

  • Boyan GS, Williams JL, Reichert H (1995) Morphogenetic reorganization of the brain during embryogenesis in the grasshopper. J Comp Neurol 361:429–440

    Article  CAS  PubMed  Google Scholar 

  • Boyan GS, Williams JLD, Herbert Z (2008) An ontogenetic analysis of locustatachykinin-like expression in the central complex of the grasshopper Schistocerca gregaria. Arthropod Struct Dev 37:1–10

    Article  Google Scholar 

  • Boyan G, Williams JL, Herbert Z (2010) Multipotent neuroblasts generate a biochemical neuroarchitecture in the central complex of the grasshopper Schistocerca gregaria. Cell Tissue Res 340:13–28

    Article  PubMed  Google Scholar 

  • Broadus J, Doe CQ (1995) Evolution of neuroblast identity: seven-up and prospero expression reveal homologous and divergent neuroblast fates in Drosophila and Schistocerca. Development 121:3989–3996

    CAS  PubMed  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates, 2 vol. Freeman, San Francisco

    Google Scholar 

  • Cayre M, Strambi C, Strambi A (1994) Neurogenesis in an adult insect brain and its hormonal control. Nature 368:57–59

    Article  CAS  Google Scholar 

  • Doe CQ (2008) Neural stem cells: balancing self-renewal with differentiation. Development 135:1575–1587

    Article  CAS  PubMed  Google Scholar 

  • Doe CQ, Goodman CS (1985a) Early events in insect neurogenesis. I. Development and segmental differences in the pattern of neuronal precursor cells. Dev Biol 111:193–205

    Article  CAS  PubMed  Google Scholar 

  • Doe CQ, Goodman CS (1985b) Early events in insect neurogenesis. II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Dev Biol 111:206–219

    Article  CAS  PubMed  Google Scholar 

  • Farris SM (2005) Developmental organization of the mushroom bodies of Thermobia domestica (Zygentoma, Lepismatidae): insights into mushroom body evolution from a basal insect. Evol Dev 7:150–159

    Article  PubMed  Google Scholar 

  • Farris SM, Sinakevitch I (2003) Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center. Arthropod Struct Dev 32:79–101

    Article  PubMed  Google Scholar 

  • Farris SM, Strausfeld NJ (2001) Development of laminar organization in the mushroom bodies of the cockroach: Kenyon cell proliferation, outgrowth, and maturation. J Comp Neurol 439:331–351

    Article  CAS  PubMed  Google Scholar 

  • Goodman CS, Doe CQ (1994) Embryonic development of the Drosophila central nervous system. In: Bate M, Martinez-Arias A (eds) The development of Drosophila, vol 1. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 1131–1206

    Google Scholar 

  • Goodman CS, Spitzer NC (1979) Embryonic development of identified neurones: differentiation from neuroblast to neurone. Nature 280:208–214

    Article  CAS  PubMed  Google Scholar 

  • Goodman CS, O’Shea M, McCaman R, Spitzer NC (1979) Embryonic development of identified neurons: temporal pattern of morphological and biochemical differentiation. Science 204:1219–1222

    Article  CAS  PubMed  Google Scholar 

  • Goodman CS, Pearson KG, Spitzer NC (1980) Electrical excitability: a spectrum of properties in the progeny of a single embryonic neuroblast. Proc Natl Acad Sci USA 77:1676–1680

    Article  CAS  PubMed  Google Scholar 

  • Haase A, Stern M, Wächtler K, Bicker G (2001) A tissue-specific marker of Ecdysozoa. Dev Genes Evol 211:428–433

    Article  CAS  PubMed  Google Scholar 

  • Halter DA, Urban J, Rickert C, Ner SS, Ito K, Travers AA, Technau GM (1995) The homeobox gene repo is required for the differentiation and maintenance of glial function in the embryonic nervous system of Drosophila melanogaster. Development 121:317–322

    CAS  PubMed  Google Scholar 

  • Heinze S, Homberg U (2007) Maplike representation of celestial e-vector orientations in the brain of an insect. Science 315:995–997

    Article  CAS  PubMed  Google Scholar 

  • Heisenberg M (1998) What do the mushroom bodies do for the insect brain? An introduction. Learn Mem 5:1–10

    CAS  PubMed  Google Scholar 

  • Hendzel M, Wie Y, Mancini MA, Van Hooser A, Ranali T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360

    Article  CAS  PubMed  Google Scholar 

  • Higginbotham HR, Gleeson JG (2007) The centrosome in neuronal development. Trends Neurosci 30:276–283

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann K, Wirmer A, Kunst M, Gocht D, Heinrich R (2007) Muscarinic excitation in grasshopper song control circuits is limited by acetylcholinesterase activity. Zool Sci 24:1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Homberg U (1987) Structure and functions of the central complex in insects. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure, and functions. Wiley, New York, pp 347–367

    Google Scholar 

  • Homberg U (1994) Flight-correlated activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria. J Comp Physiol [A] 175:597–610

    Google Scholar 

  • Horvitz HR, Ellis HM, Sternberg PW (1982) Programmed cell death in nematode development. Neurosci Comment 1:56–65

    Google Scholar 

  • Ito K, Awasaki T (2008) Clonal unit architecture of the adult fly brain. In: Technau GM (ed) Brain development in Drosophila melanogaster. Springer, New York, pp 137–158

    Google Scholar 

  • Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124:761–771

    CAS  PubMed  Google Scholar 

  • Izergina N, Balmer J, Bello B, Reichert H (2009) Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain. Neural Dev 4:44

    Article  PubMed  Google Scholar 

  • Jan LY, Jan YN (1982) Antibodies to horseradish-peroxidase as specific neuronal markers in Drosophila and grasshopper embryos. Proc Natl Acad Sci USA 79:2700–2704

    Article  CAS  PubMed  Google Scholar 

  • Karcavich R, Doe CQ (2005) Drosophila neuroblast 7-3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J Comp Neurol 481:240–251

    Article  PubMed  Google Scholar 

  • Karlstrom RO, Wilder LP, Bastiani MJ (1993) Lachesin: an immunoglobulin superfamily protein whose expression correlates with neurogenesis in grasshopper embryos. Development 118:509–522

    CAS  PubMed  Google Scholar 

  • Kumar A, Bello B, Reichert H (2009) Lineage-specific programmed cell death in postembryonic brain development of Drosophila. Development 136:3433–3442

    Article  CAS  PubMed  Google Scholar 

  • Lai SL, Awasaki T, Ito K, Lee T (2008) Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage. Development 135:2883–2893

    Article  CAS  PubMed  Google Scholar 

  • Llimargas M, Strigini M, Katidou M, Karagogeos D, Casanova J (2003) Lachesin is a component of a separate junction-based mechanism that controls tube size and epithelial integrity in the Drosophila tracheal system. Development 131:181–190

    Article  Google Scholar 

  • Loesel R, Nässel DR, Strausfeld NJ (2002) Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev 31:77–91

    Article  PubMed  Google Scholar 

  • Martin JR, Raabe T, Heisenberg M (1999) Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J Comp Physiol [A] 185:277–288

    Article  CAS  Google Scholar 

  • Maurange C, Gould AP (2005) Brainy but not too brainy: starting and stopping neuroblast divisions in Drosophila. Trends Neurosci 28:30–36

    Article  CAS  PubMed  Google Scholar 

  • Pearson BJ, Doe CQ (2003) Regulation of neuroblast competence in Drosophila. Nature 425:624–628

    Article  CAS  PubMed  Google Scholar 

  • Pereanu W, Hartenstein V (2006) Neural lineages of the Drosophila brain: a three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage. J Neurosci 26:5534–5553

    Article  CAS  PubMed  Google Scholar 

  • Prokop A, Technau GM (1991) The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Development 111:79–88

    CAS  PubMed  Google Scholar 

  • Renn SCN, Armstrong JD, Yang M, Wang Z, An X, Kaiser K, Taghert PH (1999) Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol 41:189–207

    Article  CAS  PubMed  Google Scholar 

  • Seeger M, Tear G, Ferres-Marco D, Goodman CS (1993) Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10:409–426

    Article  CAS  PubMed  Google Scholar 

  • Shepherd D, Bate CM (1990) Spatial and temporal patterns of neurogenesis in the embryo of the locust (Schistocerca gregaria). Development 108:83–96

    Google Scholar 

  • Snow PM, Patel NH, Harrelson AL, Goodman CS (1987) Neural-specific carbohydrate moiety shared by many surface glycoproteins in Drosophila and grasshopper embryos. J Neurosci 7:4137–4144

    CAS  PubMed  Google Scholar 

  • Spana EP, Doe CQ (1995) The Prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121:3187–3195

    CAS  PubMed  Google Scholar 

  • Srinivasan S, Peng C-Y, Nair S, Skeath JB, Spana EP, Doe CQ (1998) Biochemical analysis of Prospero protein during asymmetric cell division: cortical Prospero is highly phosphorylated relative to nuclear Prospero. Dev Biol 204:478–487

    Article  CAS  PubMed  Google Scholar 

  • Stevenson PA, Kutsch W (1986) Basic circuitry of an adult-specific motor program completed with embryogenesis. Naturwissenschaften 73:741–743

    Article  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Strausfeld NJ (2009) Brain organization and the origin of insects: an assessment. Proc R Soc Lond [Biol] 276:1929–1937

    Article  Google Scholar 

  • Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K (1998) Evolution, discovery, and interpretation of arthropod mushroom bodies. Learn Mem 5:11–37

    CAS  PubMed  Google Scholar 

  • Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12:633–638

    Article  CAS  PubMed  Google Scholar 

  • Strigini M, Cantera R, Morin X, Bastiani MJ, Bate M, Karagogeos D (2006) The IgLON protein Lachesin is required for the blood-brain barrier in Drosophila. Mol Cell Neurosci 32:91–101

    Article  CAS  PubMed  Google Scholar 

  • Taghert PH, Goodman CS (1984) Cell determination and differentiation of identified serotonin-immunoreactive neurons in the grasshopper embryo. J Neurosci 4:989–1000

    CAS  PubMed  Google Scholar 

  • Takizawa T, Meshorer E (2008) Chromatin and nuclear architecture in the nervous system. Trends Neurosci 31:343–352

    Article  CAS  PubMed  Google Scholar 

  • Truman JW (1990) Metamorphosis of the central nervous system of Drosophila. J Neurobiol 21:1072–1084

    Article  CAS  PubMed  Google Scholar 

  • Truman JW, Bate M (1998) Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev Biol 125:145–157

    Article  Google Scholar 

  • Wegerhoff R, Breidbach O (1992) Structure and development of the larval central complex in a holometabolous insect, the beetle Tenebrio molitor. Cell Tissue Res 268:341–358

    Article  Google Scholar 

  • Williams JLD (1975) Anatomical studies of the insect central nervous system: a ground-plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera). J Zool Lond 176:67–86

    Article  Google Scholar 

  • Williams JLD, Boyan GS (2008) Building the central complex of the grasshopper Schistocerca gregaria: axons pioneering the w, x, y, z tracts project onto the primary commissural fascicle of the brain. Arthropod Struct Dev 37:129–140

    Article  CAS  PubMed  Google Scholar 

  • Williams JLD, Guentner M, Boyan GS (2005) Building the central complex of the grasshopper Schistocerca gregaria: temporal topology organizes the neuroarchitecture of the w, x, y, z tracts. Arthropod Struct Dev 34:97–110

    Article  Google Scholar 

  • Yamashiki N (1981) The role of the spindle body in unequal division of the grasshopper neuroblast. Zool Mag 90:93–101

    Google Scholar 

  • Yamashiki N, Kawamura KY (1986a) Microdissection studies on the polarity of unequal division in grasshopper neuroblasts. I. Subsequent divisions in neuroblast-type cells produced against the polarity by micromanipulation. Exp Cell Res 166:127–138

    Article  CAS  PubMed  Google Scholar 

  • Yamashiki N, Kawamura KY (1986b) Microdissection studies on the polarity of unequal division in grasshopper neuroblasts. II. Cell division in binucleate neuroblasts. Dev Growth Differ 28:603–609

    Article  Google Scholar 

  • Zacharias D, Williams JLD, Meier T, Reichert H (1993) Neurogenesis in the insect brain: cellular identification and molecular characterization of brain neuroblasts in the grasshopper embryo. Development 118:941–955

    CAS  Google Scholar 

  • Zhong W, Chia W (2008) Neurogenesis and asymmetric cell division. Curr Opin Neurobiol 18:4–11

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Yu Liu for critical comments on the manuscript, to Karin Fischer for excellent technical assistance and to M. Bastiani, G. Technau and the Developmental Studies Hybridoma Bank, Iowa for antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Boyan.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (grant: BO 1434/ 3-5).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyan, G., Williams, L., Legl, A. et al. Proliferative cell types in embryonic lineages of the central complex of the grasshopper Schistocerca gregaria . Cell Tissue Res 341, 259–277 (2010). https://doi.org/10.1007/s00441-010-0992-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0992-6

Keywords

Navigation