Skip to main content

Advertisement

Log in

Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Muscle tissue represents an abundant, accessible, and replenishable source of adult stem cells for cell-based tissue and genetic engineering. A population of cells isolated from muscle exhibits both multipotentiality and self-renewal capabilities. Satellite cells, referred to by many investigators as muscle stem cells, are myogenic precursors that are capable of regenerating muscle and that demonstrate self-renewal properties; however, they are considered to be committed to the myogenic lineage. Muscle-derived stem cells (MDSCs), which may represent a predecessor of the satellite cell, are considered to possess a higher regeneration capacity and to exhibit better cell survival and a broader range of multilineage capabilities. Remarkably, MDSCs are not only able to differentiate into mesodermal cell types including the myogenic, adipogenic, osteogenic, chondrogenic, endothelial, and hematopoietic lineages, but also possess the potential to break germ layer commitment and differentiate into ectodermal lineages including neuron-like cells under certain conditions. This article reviews the current preclinical studies and potential clinical applications of MDSC-mediated gene therapy and tissue-engineering and methods for MDSC isolation, differentiation, and molecular characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adachi N, Sato K, Usas A, Fu FH, Ochi M, Han CW, Niyibizi C, Huard J (2002) Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol 29:1920–1930

    CAS  PubMed  Google Scholar 

  • Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A, Bianchi K, Franzin C, Cortivo R, Rossato M, Vettor R, Abatangelo G, Pozzan T, Pinton P, Rizzuto R (2008) High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci USA 105:1226–1231

    CAS  PubMed  Google Scholar 

  • Alessandri G, Pagano S, Bez A, Benetti A, Pozzi S, Iannolo G, Baronio M, Invernici G, Caruso A, Muneretto C, Bisleri G, Parati E (2004) Isolation and culture of human muscle-derived stem cells able to differentiate into myogenic and neurogenic cell lineages. Lancet 364:1872–1883

    CAS  PubMed  Google Scholar 

  • Allan DS, Jay KE, Bhatia M (2005) Hematopoietic capacity of adult human skeletal muscle is negligible. Bone Marrow Transplant 35:663–666

    CAS  PubMed  Google Scholar 

  • Ambrosio F, Ferrari RJ, Fitzgerald GK, Carvell G, Boninger ML, Huard J (2009) Functional overloading of dystrophic mice enhances muscle-derived stem cell contribution to muscle contractile capacity. Arch Phys Med Rehabil 90:66–73

    PubMed  Google Scholar 

  • Arriero M, Brodsky SV, Gealekman O, Lucas PA, Goligorsky MS (2004) Adult skeletal muscle stem cells differentiate into endothelial lineage and ameliorate renal dysfunction after acute ischemia. Am J Physiol Ren Physiol 287:F621–F627

    CAS  Google Scholar 

  • Arsic N, Mamaeva D, Lamb NJ, Fernandez A (2008) Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages. Exp Cell Res 314:1266–1280

    CAS  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, Zee R van der, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    CAS  PubMed  Google Scholar 

  • Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    CAS  PubMed  Google Scholar 

  • Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159:123–134

    CAS  PubMed  Google Scholar 

  • Baek YS, Kang SH, Park JS, Kim S, Yoo BS, Lee JY, Ghil SH (2009) Long-term cultured skeletal muscle-derived neural precursor cells and their neurogenic potentials. Neuroreport 20:1109–1114

    PubMed  Google Scholar 

  • Baroffio A, Hamann M, Bernheim L, Bochaton-Piallat ML, Gabbiani G, Bader CR (1996) Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells. Differentiation 60:47–57

    CAS  PubMed  Google Scholar 

  • Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144:1113–1122

    CAS  PubMed  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    CAS  PubMed  Google Scholar 

  • Benchaouir R, Meregalli M, Farini A, D’Antona G, Belicchi M, Goyenvalle A, Battistelli M, Bresolin N, Bottinelli R, Garcia L, Torrente Y (2007) Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 1:646–657

    CAS  PubMed  Google Scholar 

  • Benchaouir R, Meregalli M, Farini A, D’Antona G, Belicchi M, Goyenvalle A, Battistelli M, Bresolin N, Bottinelli R, Garcia L, Torrente Y (2008) Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice (in French). Med Sci (Paris) 24:99–101

    Google Scholar 

  • Bischoff R (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115:129–139

    CAS  PubMed  Google Scholar 

  • Bosch P, Musgrave D, Ghivizzani S, Latterman C, Day CS, Huard J (2000) The efficiency of muscle-derived cell-mediated bone formation. Cell Transplant 9:463–470

    CAS  PubMed  Google Scholar 

  • Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    CAS  PubMed  Google Scholar 

  • Bueno DF, Kerkis I, Costa AM, Martins MT, Kobayashi GS, Zucconi E, Fanganiello RD, Salles FT, Almeida AB, Amaral CE do, Alonso N, Passos-Bueno MR (2009) New source of muscle-derived stem cells with potential for alveolar bone reconstruction in cleft lip and/or palate patients. Tissue Eng Part A 15:427–435

    CAS  PubMed  Google Scholar 

  • Cannon TW, Lee JY, Somogyi G, Pruchnic R, Smith CP, Huard J, Chancellor MB (2003) Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra. Urology 62:958–963

    PubMed  Google Scholar 

  • Cao B, Zheng B, Jankowski RJ, Kimura S, Ikezawa M, Deasy B, Cummins J, Epperly M, Qu-Petersen Z, Huard J (2003) Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat Cell Biol 5:640–646

    CAS  PubMed  Google Scholar 

  • Chermansky CJ, Tarin T, Kwon DD, Jankowski RJ, Cannon TW, Groat WC de, Huard J, Chancellor MB (2004) Intraurethral muscle-derived cell injections increase leak point pressure in a rat model of intrinsic sphincter deficiency. Urology 63:780–785

    PubMed  Google Scholar 

  • Claros S, Alonso M, Becerra J, Andrades JA (2008) Selection and induction of rat skeletal muscle-derived cells to the chondro-osteogenic lineage. Cell Mol Biol (Noisy-le-grand) 54:1–10

    CAS  Google Scholar 

  • Clause KC, Tinney JP, Liu LJ, Gharaibeh B, Huard J, Kirk JA, Shroff SG, Fujimoto KL, Wagner W, Ralphe JC, Keller BB, Tobita K (2009) A three-dimensional gel bioreactor for assessment of cardiomyocyte induction in skeletal muscle derived stem cells. Tissue Eng Part C Methods (in press)

  • Colvin GA, Dooner MS, Abedi M, Quesenberry PJ (2004) The heterogeneity of clonally derived purified murine marrow stem cell colonies (abstract). Blood 104:3215

    Google Scholar 

  • Corsi KA, Pollett JB, Phillippi JA, Usas A, Li G, Huard J (2007) Osteogenic potential of postnatal skeletal muscle-derived stem cells is influenced by donor sex. J Bone Miner Res 22:1592–1602

    PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    CAS  PubMed  Google Scholar 

  • Crosby JR, Kaminski WE, Schatteman G, Martin PJ, Raines EW, Seifert RA, Bowen-Pope DF (2000) Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 87:728–730

    CAS  PubMed  Google Scholar 

  • De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147:869–878

    PubMed  Google Scholar 

  • Deasy BM, Huard J (2002) Gene therapy and tissue engineering based on muscle-derived stem cells. Curr Opin Mol Ther 4:382–389

    CAS  PubMed  Google Scholar 

  • Deasy BM, Jankowski RJ, Huard J (2001) Muscle-derived stem cells: characterization and potential for cell-mediated therapy. Blood Cells Mol Dis 27:924–933

    CAS  PubMed  Google Scholar 

  • Deasy BM, Gharaibeh BM, Pollett JB, Jones MM, Lucas MA, Kanda Y, Huard J (2005) Long-term self-renewal of postnatal muscle-derived stem cells. Mol Biol Cell 16:3323–3333

    CAS  PubMed  Google Scholar 

  • Farace F, Prestoz L, Badaoui S, Guillier M, Haond C, Opolon P, Thomas JL, Zalc B, Vainchenker W, Turhan AG (2004) Evaluation of hematopoietic potential generated by transplantation of muscle-derived stem cells in mice. Stem Cells Dev 13:83–92

    CAS  PubMed  Google Scholar 

  • Geiger H, True JM, Grimes B, Carroll EJ, Fleischman RA, Van Zant G (2002) Analysis of the hematopoietic potential of muscle-derived cells in mice. Blood 100:721–723

    CAS  PubMed  Google Scholar 

  • Gharaibeh B, Lu A, Tebbets J, Zheng B, Feduska J, Crisan M, Peault B, Cummins J, Huard J (2008) Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc 3:1501–1509

    CAS  PubMed  Google Scholar 

  • Goldring MB (2006) Are bone morphogenetic proteins effective inducers of cartilage repair? Ex vivo transduction of muscle-derived stem cells. Arthritis Rheum 54:387–389

    CAS  PubMed  Google Scholar 

  • Goodell MA (2003) Stem-cell “plasticity”: befuddled by the muddle. Curr Opin Hematol 10:208–213

    PubMed  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    CAS  PubMed  Google Scholar 

  • Herreros J, Prosper F, Perez A, Gavira JJ, Garcia-Velloso MJ, Barba J, Sanchez PL, Canizo C, Rabago G, Marti-Climent JM, Hernandez M, Lopez-Holgado N, Gonzalez-Santos JM, Martin-Luengo C, Alegria E (2003) Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur Heart J 24:2012–2020

    PubMed  Google Scholar 

  • Ho MH, Heydarkhan S, Vernet D, Kovanecz I, Ferrini MG, Bhatia NN, Gonzalez-Cadavid NF (2009) Stimulating vaginal repair in rats through skeletal muscle-derived stem cells seeded on small intestinal submucosal scaffolds. Obstet Gynecol 114:300–309

    PubMed  Google Scholar 

  • Huang JI, Kazmi N, Durbhakula MM, Hering TM, Yoo JU, Johnstone B (2005) Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res 23:1383–1389

    CAS  PubMed  Google Scholar 

  • Huard J (2008) Regenerative medicine based on muscle stem cells. J Musculoskelet Neuronal Interact 8:337

    CAS  PubMed  Google Scholar 

  • Huard J, Acsadi G, Jani A, Massie B, Karpati G (1994) Gene transfer into skeletal muscles by isogenic myoblasts. Hum Gene Ther 5:949–958

    CAS  PubMed  Google Scholar 

  • Huard J, Yokoyama T, Pruchnic R, Qu Z, Li Y, Lee JY, Somogyi GT, Groat WC de, Chancellor MB (2002) Muscle-derived cell-mediated ex vivo gene therapy for urological dysfunction. Gene Ther 9:1617–1626

    CAS  PubMed  Google Scholar 

  • Hwang JH, Yuk SH, Lee JH, Lyoo WS, Ghil SH, Lee SS, Khang IG, Paik SY, Lee JY (2004a) Differentiation of stem cells isolated from rat smooth muscle. Mol Cells 17:381 [erratum: vol 17, pp 57-61]

    CAS  PubMed  Google Scholar 

  • Hwang JH, Yuk SH, Lee JH, Lyoo WS, Ghil SH, Lee SS, Khang IG, Paik SY, Lee JY (2004b) Isolation of muscle derived stem cells from rat and its smooth muscle differentiation [corrected]. Mol Cells 17:57–61

    CAS  PubMed  Google Scholar 

  • Ikezawa M, Cao B, Qu Z, Peng H, Xiao X, Pruchnic R, Kimura S, Miike T, Huard J (2003) Dystrophin delivery in dystrophin-deficient DMDmdx skeletal muscle by isogenic muscle-derived stem cell transplantation. Hum Gene Ther 14:1535–1546

    CAS  PubMed  Google Scholar 

  • Invernici G, Cristini S, Madeddu P, Brock S, Spillmann F, Bernasconi P, Cappelletti C, Calatozzolo C, Fascio U, Bisleri G, Muneretto C, Alessandri G, Parati EA (2008) Human adult skeletal muscle stem cells differentiate into cardiomyocyte phenotype in vitro. Exp Cell Res 314:366–376

    CAS  PubMed  Google Scholar 

  • Issarachai S, Priestley GV, Nakamoto B, Papayannopoulou T (2002) Cells with hemopoietic potential residing in muscle are itinerant bone marrow-derived cells. Exp Hematol 30:366–373

    PubMed  Google Scholar 

  • Jackson KA, Mi T, Goodell MA (1999) Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 96:14482–14486

    CAS  PubMed  Google Scholar 

  • Jang YY, Sharkis SJ (2005) Stem cell plasticity: a rare cell, not a rare event. Stem Cell Rev 1:45–51

    CAS  PubMed  Google Scholar 

  • Jankowski RJ, Haluszczak C, Trucco M, Huard J (2001) Flow cytometric characterization of myogenic cell populations obtained via the preplate technique: potential for rapid isolation of muscle-derived stem cells. Hum Gene Ther 12:619–628

    CAS  PubMed  Google Scholar 

  • Jankowski RJ, Deasy BM, Huard J (2002) Muscle-derived stem cells. Gene Ther 9:642–647

    CAS  PubMed  Google Scholar 

  • Jay KE, Gallacher L, Bhatia M (2002) Emergence of muscle and neural hematopoiesis in humans. Blood 100:3193–3202

    CAS  PubMed  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002a) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    CAS  PubMed  Google Scholar 

  • Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002b) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904

    CAS  PubMed  Google Scholar 

  • Kang SB, Lee HN, Lee JY, Park JS, Lee HS (2008) Sphincter contractility after muscle-derived stem cells autograft into the cryoinjured anal sphincters of rats. Dis Colon Rectum 51:1367–1373

    PubMed  Google Scholar 

  • Kim KS, Lee JH, Ahn HH, Lee JY, Khang G, Lee B, Lee HB, Kim MS (2008) The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds. Biomaterials 29:4420–4428

    CAS  PubMed  Google Scholar 

  • Kondo T, Case J, Srour EF, Hashino E (2006) Skeletal muscle-derived progenitor cells exhibit neural competence. Neuroreport 17:1–4

    PubMed  Google Scholar 

  • Kuang D, Zhao X, Xiao G, Ni J, Feng Y, Wu R, Wang G (2008) Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Res Cardiol 103:265–273

    CAS  PubMed  Google Scholar 

  • Kubo S, Cooper GM, Matsumoto T, Phillippi JA, Corsi KA, Usas A, Li G, Fu FH, Huard J (2009) Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum 60:155–165

    CAS  PubMed  Google Scholar 

  • Kucia M, Ratajczak J, Reca R, Janowska-Wieczorek A, Ratajczak MZ (2004) Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis 32:52–57

    CAS  PubMed  Google Scholar 

  • Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T, Cummins J, Fu FH, Huard J (2006) Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54:433–442

    CAS  PubMed  Google Scholar 

  • Kwon D, Kim Y, Pruchnic R, Jankowski R, Usiene I, Miguel F de, Huard J, Chancellor MB (2006) Periurethral cellular injection: comparison of muscle-derived progenitor cells and fibroblasts with regard to efficacy and tissue contractility in an animal model of stress urinary incontinence. Urology 68:449–454

    PubMed  Google Scholar 

  • Lee JY, Qu-Petersen Z, Cao B, Kimura S, Jankowski R, Cummins J, Usas A, Gates C, Robbins P, Wernig A, Huard J (2000) Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 150:1085–1100

    CAS  PubMed  Google Scholar 

  • Lee JY, Musgrave D, Pelinkovic D, Fukushima K, Cummins J, Usas A, Robbins P, Fu FH, Huard J (2001) Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice. J Bone Joint Surg Am 83-A:1032–1039

    CAS  PubMed  Google Scholar 

  • Lee JY, Cannon TW, Pruchnic R, Fraser MO, Huard J, Chancellor MB (2003) The effects of periurethral muscle-derived stem cell injection on leak point pressure in a rat model of stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 14:31–37

    CAS  PubMed  Google Scholar 

  • Lee JY, Paik SY, Yuk SH, Lee JH, Ghil SH, Lee SS (2004) Long term effects of muscle-derived stem cells on leak point pressure and closing pressure in rats with transected pudendal nerves. Mol Cells 18:309–313

    CAS  PubMed  Google Scholar 

  • Levy MM, Joyner CJ, Virdi AS, Reed A, Triffitt JT, Simpson AH, Kenwright J, Stein H, Francis MJ (2001) Osteoprogenitor cells of mature human skeletal muscle tissue: an in vitro study. Bone 29:317–322

    CAS  PubMed  Google Scholar 

  • Li J, Wang S, Han J, Yu S, Zhang C, Zhao Y (2008) Cells captured from spatium intermusculare by porous material exhibit the characteristics of stem cells. Histochem Cell Biol 130:741–748

    CAS  PubMed  Google Scholar 

  • Lu SH, Yang AH, Wei CF, Chiang HS, Chancellor MB (2009) Multi-potent differentiation of human purified muscle-derived cells: potential for tissue regeneration. BJU Int (in press)

  • Machida S, Spangenburg EE, Booth FW (2004) Primary rat muscle progenitor cells have decreased proliferation and myotube formation during passages. Cell Prolif 37:267–277

    CAS  PubMed  Google Scholar 

  • Mahmud N, Weiss P, Li F, Hoffman R (2002) Primate skeletal muscle contains cells capable of sustaining in vitro hematopoiesis. Exp Hematol 30:925–936

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Kubo S, Meszaros LB, Corsi KA, Cooper GM, Li G, Usas A, Osawa A, Fu FH, Huard J (2008) The influence of sex on the chondrogenic potential of muscle-derived stem cells: implications for cartilage regeneration and repair. Arthritis Rheum 58:3809–3819

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Cooper GM, Gharaibeh B, Meszaros LB, Li G, Usas A, Fu FH, Huard J (2009) Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum 60:1390–1405

    PubMed  Google Scholar 

  • McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA 99:1341–1346

    CAS  PubMed  Google Scholar 

  • Minas T, Nehrer S (1997) Current concepts in the treatment of articular cartilage defects. Orthopedics 20:525–538

    CAS  PubMed  Google Scholar 

  • Molnar G, Ho ML, Schroedl NA (1996) Evidence for multiple satellite cell populations and a non-myogenic cell type that is regulated differently in regenerating and growing skeletal muscle. Tissue Cell 28:547–556

    CAS  PubMed  Google Scholar 

  • Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM, Asahara T, Kalka C (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 30:967–972

    CAS  PubMed  Google Scholar 

  • Musgrave DS, Pruchnic R, Bosch P, Ziran BH, Whalen J, Huard J (2002) Human skeletal muscle cells in ex vivo gene therapy to deliver bone morphogenetic protein-2. J Bone Joint Surg Br 84:120–127

    CAS  PubMed  Google Scholar 

  • Negroni E, Riederer I, Chaouch S, Belicchi M, Razini P, Di Santo J, Torrente Y, Butler-Browne GS, Mouly V (2009) In vivo myogenic potential of human CD133(+) muscle-derived stem cells: a quantitative study. Mol Ther 17:1771–1778

    CAS  PubMed  Google Scholar 

  • Nieponice A, Soletti L, Guan J, Deasy BM, Huard J, Wagner WR, Vorp DA (2008) Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials 29:825–833

    CAS  PubMed  Google Scholar 

  • Nolazco G, Kovanecz I, Vernet D, Gelfand RA, Tsao J, Ferrini MG, Magee T, Rajfer J, Gonzalez-Cadavid NF (2008) Effect of muscle-derived stem cells on the restoration of corpora cavernosa smooth muscle and erectile function in the aged rat. BJU Int 101:1156–1164

    CAS  PubMed  Google Scholar 

  • Okada M, Payne TR, Zheng B, Oshima H, Momoi N, Tobita K, Keller BB, Phillippi JA, Peault B, Huard J (2008) Myogenic endothelial cells purified from human skeletal muscle improve cardiac function after transplantation into infarcted myocardium. J Am Coll Cardiol 52:1869–1880

    PubMed  Google Scholar 

  • Pang W (2000) Role of muscle-derived cells in hematopoietic reconstitution of irradiated mice. Blood 95:1106–1108

    CAS  PubMed  Google Scholar 

  • Peault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T, Gussoni E, Kunkel LM, Huard J (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 15:867–877

    CAS  PubMed  Google Scholar 

  • Peng H, Wright V, Usas A, Gearhart B, Shen HC, Cummins J, Huard J (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 110:751–759

    CAS  PubMed  Google Scholar 

  • Peyromaure M, Sebe P, Praud C, DeRocle G, Potin N, Pinset C, Sebille A (2004) Fate of implanted syngenic muscle precursor cells in striated urethral sphincter of female rats: perspectives for treatment of urinary incontinence. Urology 64:1037–1041

    PubMed  Google Scholar 

  • Qu Z, Balkir L, Deutekom JC van, Robbins PD, Pruchnic R, Huard J (1998) Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol 142:1257–1267

    CAS  PubMed  Google Scholar 

  • Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, Huard J (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157:851–864

    CAS  PubMed  Google Scholar 

  • Raff M (2003) Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol 19:1–22

    CAS  PubMed  Google Scholar 

  • Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125:1275–1287

    CAS  PubMed  Google Scholar 

  • Rantanen J, Hurme T, Lukka R, Heino J, Kalimo H (1995) Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells. Lab Invest 72:341–347

    CAS  PubMed  Google Scholar 

  • Richler C, Yaffe D (1970) The in vitro cultivation and differentiation capacities of myogenic cell lines. Dev Biol 23:1–22

    CAS  PubMed  Google Scholar 

  • Romero-Ramos M, Vourc’h P, Young HE, Lucas PA, Wu Y, Chivatakarn O, Zaman R, Dunkelman N, El-Kalay MA, Chesselet MF (2002) Neuronal differentiation of stem cells isolated from adult muscle. J Neurosci Res 69:894–907

    CAS  PubMed  Google Scholar 

  • Rouger K, Fornasari B, Armengol V, Jouvion G, Leroux I, Dubreil L, Feron M, Guevel L, Cherel Y (2007) Progenitor cell isolation from muscle-derived cells based on adhesion properties. J Histochem Cytochem 55:607–618

    CAS  PubMed  Google Scholar 

  • Sakai T, Ling Y, Payne TR, Huard J (2002) The use of ex vivo gene transfer based on muscle-derived stem cells for cardiovascular medicine. Trends Cardiovasc Med 12:115–120

    CAS  PubMed  Google Scholar 

  • Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino M, Barresi R, Bresolin N, De Angelis M, Campbell K (2003) Cell therapy of {alpha}-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301:487

    CAS  PubMed  Google Scholar 

  • Schultz E (1996) Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol 175:84–94

    CAS  PubMed  Google Scholar 

  • Schultz E, McCormick KM (1994) Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol 123:213–257

    CAS  PubMed  Google Scholar 

  • Schultz E, Jaryszak DL, Valliere CR (1985) Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8:217–222

    CAS  PubMed  Google Scholar 

  • Schultz SS, Lucas PA (2006) Human stem cells isolated from adult skeletal muscle differentiate into neural phenotypes. J Neurosci Methods 152:144–155

    CAS  PubMed  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    CAS  PubMed  Google Scholar 

  • Shen HC, Peng H, Usas A, Gearhart B, Cummins J, Fu FH, Huard J (2004a) Ex vivo gene therapy-induced endochondral bone formation: comparison of muscle-derived stem cells and different subpopulations of primary muscle-derived cells. Bone 34:982–992

    CAS  PubMed  Google Scholar 

  • Shen HC, Peng H, Usas A, Gearhart B, Fu FH, Huard J (2004b) Structural and functional healing of critical-size segmental bone defects by transduced muscle-derived cells expressing BMP4. J Gene Med 6:984–991

    CAS  PubMed  Google Scholar 

  • Sun JS, Wu SY, Lin FH (2005) The role of muscle-derived stem cells in bone tissue engineering. Biomaterials 26:3953–3960

    CAS  PubMed  Google Scholar 

  • Tamaki T, Akatsuka A, Ando K, Nakamura Y, Matsuzawa H, Hotta T, Roy RR, Edgerton VR (2002) Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol 157:571–577

    CAS  PubMed  Google Scholar 

  • Tamaki T, Akatsuka A, Okada Y, Matsuzaki Y, Okano H, Kimura M (2003) Growth and differentiation potential of main- and side-population cells derived from murine skeletal muscle. Exp Cell Res 291:83–90

    CAS  PubMed  Google Scholar 

  • Tamaki T, Uchiyama Y, Okada Y, Ishikawa T, Sato M, Akatsuka A, Asahara T (2005) Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells. Circulation 112:2857–2866

    PubMed  Google Scholar 

  • Tamaki T, Okada Y, Uchiyama Y, Tono K, Masuda M, Wada M, Hoshi A, Akatsuka A (2007a) Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived CD34(-)/45(-) cells. Histochem Cell Biol 128:349–360

    CAS  PubMed  Google Scholar 

  • Tamaki T, Okada Y, Uchiyama Y, Tono K, Masuda M, Wada M, Hoshi A, Ishikawa T, Akatsuka A (2007b) Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage. Stem Cells 25:2283–2290

    CAS  PubMed  Google Scholar 

  • Tamaki T, Akatsuka A, Okada Y, Uchiyama Y, Tono K, Wada M, Hoshi A, Iwaguro H, Iwasaki H, Oyamada A, Asahara T (2008) Cardiomyocyte formation by skeletal muscle-derived multi-myogenic stem cells after transplantation into infarcted myocardium. PLoS ONE 3:e1789

    PubMed  Google Scholar 

  • Tamaki T, Uchiyama Y, Okada Y, Tono K, Masuda M, Nitta M, Hoshi A, Akatsuka A (2010) Clonal differentiation of skeletal muscle-derived CD34-/45-stem cells into cardiomyocytes in vivo. Stem Cells Dev 19:503-512

    CAS  PubMed  Google Scholar 

  • Tavian M, Zheng B, Oberlin E, Crisan M, Sun B, Huard J, Peault B (2005) The vascular wall as a source of stem cells. Ann N Y Acad Sci 1044:41–50

    PubMed  Google Scholar 

  • Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784

    CAS  PubMed  Google Scholar 

  • Torrente Y, Tremblay JP, Pisati F, Belicchi M, Rossi B, Sironi M, Fortunato F, El Fahime M, D’Angelo MG, Caron NJ, Constantin G, Paulin D, Scarlato G, Bresolin N (2001) Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J Cell Biol 152:335–348

    CAS  PubMed  Google Scholar 

  • Torrente Y, Belicchi M, Marchesi C, Dantona G, Cogiamanian F, Pisati F, Gavina M, Giordano R, Tonlorenzi R, Fagiolari G, Lamperti C, Porretti L, Lopa R, Sampaolesi M, Vicentini L, Grimoldi N, Tiberio F, Songa V, Baratta P, Prelle A, Forzenigo L, Guglieri M, Pansarasa O, Rinaldi C, Mouly V, Butler-Browne GS, Comi GP, Biondetti P, Moggio M, Gaini SM, Stocchetti N, Priori A, D’Angelo MG, Turconi A, Bottinelli R, Cossu G, Rebulla P, Bresolin N (2007) Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 16:563–577

    CAS  PubMed  Google Scholar 

  • Tsuboi K, Kawada H, Toh E, Lee YH, Tsuma M, Nakamura Y, Sato T, Ando K, Mochida J, Kato S, Hotta T (2005) Potential and origin of the hematopoietic population in human skeletal muscle. Leuk Res 29:317–324

    PubMed  Google Scholar 

  • Usas A, Ho AM, Cooper GM, Olshanski A, Peng H, Huard J (2009) Bone regeneration mediated by BMP4-expressing muscle-derived stem cells is affected by delivery system. Tissue Eng Part A 15:285–293

    CAS  PubMed  Google Scholar 

  • Vourc’h P, Romero-Ramos M, Chivatakarn O, Young HE, Lucas PA, El-Kalay M, Chesselet MF (2004) Isolation and characterization of cells with neurogenic potential from adult skeletal muscle. Biochem Biophys Res Commun 317:893–901

    PubMed  Google Scholar 

  • Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG (1999) Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 65:22–26

    CAS  PubMed  Google Scholar 

  • Wilschut KJ, Jaksani S, Van Den Dolder J, Haagsman HP, Roelen BA (2008) Isolation and characterization of porcine adult muscle-derived progenitor cells. J Cell Biochem 105:1228–1239

    CAS  PubMed  Google Scholar 

  • Winitsky SO, Gopal TV, Hassanzadeh S, Takahashi H, Gryder D, Rogawski MA, Takeda K, Yu ZX, Xu YH, Epstein ND (2005) Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro. PLoS Biol 3:e87

    PubMed  Google Scholar 

  • Wright V, Peng H, Usas A, Young B, Gearhart B, Cummins J, Huard J (2002) BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol Ther 6:169–178

    CAS  PubMed  Google Scholar 

  • Yiou R, Dreyfus P, Chopin DK, Abbou CC, Lefaucheur JP (2002) Muscle precursor cell autografting in a murine model of urethral sphincter injury. BJU Int 89:298–302

    CAS  PubMed  Google Scholar 

  • Yiou R, Yoo JJ, Atala A (2003) Restoration of functional motor units in a rat model of sphincter injury by muscle precursor cell autografts. Transplantation 76:1053–1060

    PubMed  Google Scholar 

  • Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, Lee JE, Kim YJ, Yang SK, Jung HL, Sung KW, Kim CW, Koo HH (2009) Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol l259:150–156

    Google Scholar 

  • Young HE, Steele TA, Bray RA, Detmer K, Blake LW, Lucas PW, Black AC Jr (1999) Human pluripotent and progenitor cells display cell surface cluster differentiation markers CD10, CD13, CD56, and MHC class-I. Proc Soc Exp Biol Med 221:63–71

    CAS  PubMed  Google Scholar 

  • Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, Yap S, Pollett JB, Drowley L, Cassino T, Gharaibeh B, Deasy BM, Huard J, Peault B (2007) Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 25:1025–1034

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shili Wang.

Additional information

We greatly appreciate support from the Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, and grants from the National Natural Science Foundation of China (grant nos. 30940065 and 30571766) and the Shandong Province Natural Science Foundation (grant no. Y2008C06).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Wang, S., Chen, B. et al. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res 340, 549–567 (2010). https://doi.org/10.1007/s00441-010-0978-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0978-4

Keywords

Navigation